
Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Programming Language—Common Lisp

8. Structures

Structures i

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

ii Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct Macro

Syntax:
defstruct name-and-options [documentation] {↓slot-description}*

→ structure-name

name-and-options::=structure-name | (structure-name [[↓options]])

options::=↓conc-name-option |

{↓constructor-option}* |

↓copier-option |

↓include-option |

↓initial-offset-option |

↓named-option |

↓predicate-option |

↓printer-option |

↓type-option

conc-name-option::=:conc-name | (:conc-name) | (:conc-name conc-name)

constructor-option::=:constructor |

(:constructor) |

(:constructor constructor-name) |

(:constructor constructor-name constructor-arglist)

copier-option::=:copier | (:copier) | (:copier copier-name)

predicate-option::=:predicate | (:predicate) | (:predicate predicate-name)

include-option::=(:include included-structure-name {↓slot-description}*)

printer-option::=↓print-object-option | ↓print-function-option

print-object-option::=(:print-object printer-name) | (:print-object)

print-function-option::=(:print-function printer-name) | (:print-function)

type-option::=(:type type)

named-option::=:named

initial-offset-option::=(:initial-offset initial-offset)

Structures 8–1

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

slot-description::=slot-name |

(slot-name [slot-initform [[↓slot-option]]])

slot-option::=:type slot-type |

:read-only slot-read-only-p

Arguments and Values:
conc-name—a string designator .

constructor-arglist—a boa lambda list .

constructor-name—a symbol .

copier-name—a symbol .

included-structure-name—an already-defined structure name. Note that a derived type is not
permissible, even if it would expand into a structure name.

initial-offset—a non-negative integer .

predicate-name—a symbol .

printer-name—a function name or a lambda expression.

slot-name—a symbol .

slot-initform—a form.

slot-read-only-p—a generalized boolean.

structure-name—a symbol .

type—one of the type specifiers list, vector, or (vector size), or some other type specifier defined
by the implementation to be appropriate.

documentation—a string ; not evaluated.

Description:
defstruct defines a structured type, named structure-type, with named slots as specified by the
slot-options.

defstruct defines readers for the slots and arranges for setf to work properly on such reader func-
tions. Also, unless overridden, it defines a predicate named name-p, defines a constructor function
named make-constructor-name, and defines a copier function named copy-constructor-name. All
names of automatically created functions might automatically be declared inline (at the discre-
tion of the implementation).

If documentation is supplied, it is attached to structure-name as a documentation string of kind
structure, and unless :type is used, the documentation is also attached to structure-name as a

8–2 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

documentation string of kind type and as a documentation string to the class object for the class
named structure-name.

defstruct defines a constructor function that is used to create instances of the structure created
by defstruct. The default name is make-structure-name. A different name can be supplied by
giving the name as the argument to the constructor option. nil indicates that no constructor
function will be created.

After a new structure type has been defined, instances of that type normally can be created by
using the constructor function for the type. A call to a constructor function is of the following
form:

(constructor-function-name
slot-keyword-1 form-1

slot-keyword-2 form-2

. . .)

The arguments to the constructor function are all keyword arguments. Each slot keyword ar-
gument must be a keyword whose name corresponds to the name of a structure slot. All the
keywords and forms are evaluated. If a slot is not initialized in this way, it is initialized by eval-
uating slot-initform in the slot description at the time the constructor function is called. If no
slot-initform is supplied, the consequences are undefined if an attempt is later made to read the
slot’s value before a value is explicitly assigned.

Each slot-initform supplied for a defstruct component, when used by the constructor function for
an otherwise unsupplied component, is re-evaluated on every call to the constructor function. The
slot-initform is not evaluated unless it is needed in the creation of a particular structure instance.
If it is never needed, there can be no type-mismatch error, even if the type of the slot is specified;
no warning should be issued in this case. For example, in the following sequence, only the last call
is an error.

(defstruct person (name 007 :type string))

(make-person :name "James")

(make-person)

It is as if the slot-initforms were used as initialization forms for the keyword parameters of the
constructor function.

The symbols which name the slots must not be used by the implementation as the names for the
lambda variables in the constructor function, since one or more of those symbols might have been
proclaimed special or might be defined as the name of a constant variable. The slot default init
forms are evaluated in the lexical environment in which the defstruct form itself appears and in
the dynamic environment in which the call to the constructor function appears.

For example, if the form (gensym) were used as an initialization form, either in the constructor-
function call or as the default initialization form in defstruct, then every call to the constructor
function would call gensym once to generate a new symbol .

Structures 8–3

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

Each slot-description in defstruct can specify zero or more slot-options. A slot-option consists of
a pair of a keyword and a value (which is not a form to be evaluated, but the value itself). For
example:

(defstruct ship

(x-position 0.0 :type short-float)

(y-position 0.0 :type short-float)

(x-velocity 0.0 :type short-float)

(y-velocity 0.0 :type short-float)

(mass *default-ship-mass* :type short-float :read-only t))

This specifies that each slot always contains a short float , and that the last slot cannot be altered
once a ship is constructed.

The available slot-options are:

:type type

This specifies that the contents of the slot is always of type type. This is entirely analo-
gous to the declaration of a variable or function; it effectively declares the result type of
the reader function. It is implementation-dependent whether the type is checked when
initializing a slot or when assigning to it. Type is not evaluated; it must be a valid type
specifier .

:read-only x

When x is true, this specifies that this slot cannot be altered; it will always contain the
value supplied at construction time. setf will not accept the reader function for this slot.
If x is false, this slot-option has no effect. X is not evaluated.

When this option is false or unsupplied, it is implementation-dependent whether the
ability to write the slot is implemented by a setf function or a setf expander .

The following keyword options are available for use with defstruct. A defstruct option can be
either a keyword or a list of a keyword and arguments for that keyword; specifying the keyword
by itself is equivalent to specifying a list consisting of the keyword and no arguments. The syntax
for defstruct options differs from the pair syntax used for slot-options. No part of any of these
options is evaluated.

:conc-name

This provides for automatic prefixing of names of reader (or access) functions. The
default behavior is to begin the names of all the reader functions of a structure with the
name of the structure followed by a hyphen.

:conc-name supplies an alternate prefix to be used. If a hyphen is to be used as a sep-
arator, it must be supplied as part of the prefix. If :conc-name is nil or no argument is
supplied, then no prefix is used; then the names of the reader functions are the same

8–4 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

as the slot names. If a non-nil prefix is given, the name of the reader function for each
slot is constructed by concatenating that prefix and the name of the slot, and interning
the resulting symbol in the package that is current at the time the defstruct form is
expanded.

Note that no matter what is supplied for :conc-name, slot keywords that match the slot
names with no prefix attached are used with a constructor function. The reader function
name is used in conjunction with setf . Here is an example:

(defstruct (door (:conc-name dr-)) knob-color width material) → DOOR

(setq my-door (make-door :knob-color ’red :width 5.0))

→ #S(DOOR :KNOB-COLOR RED :WIDTH 5.0 :MATERIAL NIL)

(dr-width my-door) → 5.0

(setf (dr-width my-door) 43.7) → 43.7

(dr-width my-door) → 43.7

Whether or not the :conc-name option is explicitly supplied, the following rule governs
name conflicts of generated reader (or accessor) names: For any structure type S1 having
a reader function named R for a slot named X1 that is inherited by another structure
type S2 that would have a reader function with the same name R for a slot named X2,
no definition for R is generated by the definition of S2; instead, the definition of R is
inherited from the definition of S1. (In such a case, if X1 and X2 are different slots, the
implementation might signal a style warning.)

:constructor

This option takes zero, one, or two arguments. If at least one argument is supplied and
the first argument is not nil, then that argument is a symbol which specifies the name
of the constructor function. If the argument is not supplied (or if the option itself is not
supplied), the name of the constructor is produced by concatenating the string "MAKE-"

and the name of the structure, interning the name in whatever package is current at
the time defstruct is expanded. If the argument is provided and is nil, no constructor
function is defined.

If :constructor is given as (:constructor name arglist), then instead of making a key-
word driven constructor function, defstruct defines a “positional” constructor function,
taking arguments whose meaning is determined by the argument’s position and possibly
by keywords. Arglist is used to describe what the arguments to the constructor will be.
In the simplest case something like (:constructor make-foo (a b c)) defines make-foo to
be a three-argument constructor function whose arguments are used to initialize the slots
named a, b, and c.

Because a constructor of this type operates “By Order of Arguments,” it is sometimes
known as a “boa constructor.”

For information on how the arglist for a “boa constructor” is processed, see Section 3.4.6
(Boa Lambda Lists).

Structures 8–5

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

It is permissible to use the :constructor option more than once, so that you can define
several different constructor functions, each taking different parameters.

defstruct creates the default-named keyword constructor function only if no explicit
:constructor options are specified, or if the :constructor option is specified without a
name argument.

(:constructor nil) is meaningful only when there are no other :constructor options
specified. It prevents defstruct from generating any constructors at all.

Otherwise, defstruct creates a constructor function corresponding to each supplied
:constructor option. It is permissible to specify multiple keyword constructor functions
as well as multiple “boa constructors”.

:copier

This option takes one argument, a symbol , which specifies the name of the copier func-
tion. If the argument is not provided or if the option itself is not provided, the name of
the copier is produced by concatenating the string "COPY-" and the name of the structure,
interning the name in whatever package is current at the time defstruct is expanded. If
the argument is provided and is nil, no copier function is defined.

The automatically defined copier function is a function of one argument , which must be
of the structure type being defined. The copier function creates a fresh structure that has
the same type as its argument , and that has the same component values as the original
structure; that is, the component values are not copied recursively. If the defstruct :type

option was not used, the following equivalence applies:

(copier-name x) = (copy-structure (the structure-name x))

:include

This option is used for building a new structure definition as an extension of another
structure definition. For example:

(defstruct person name age sex)

To make a new structure to represent an astronaut that has the attributes of name,
age, and sex, and functions that operate on person structures, astronaut is defined with
:include as follows:

(defstruct (astronaut (:include person)

(:conc-name astro-))

helmet-size

(favorite-beverage ’tang))

:include causes the structure being defined to have the same slots as the included
structure. This is done in such a way that the reader functions for the included structure
also work on the structure being defined. In this example, an astronaut therefore has

8–6 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

five slots: the three defined in person and the two defined in astronaut itself. The reader
functions defined by the person structure can be applied to instances of the astronaut

structure, and they work correctly. Moreover, astronaut has its own reader functions for
components defined by the person structure. The following examples illustrate the use of
astronaut structures:

(setq x (make-astronaut :name ’buzz

:age 45.

:sex t

:helmet-size 17.5))

(person-name x) → BUZZ

(astro-name x) → BUZZ

(astro-favorite-beverage x) → TANG

(reduce #’+ astros :key #’person-age) ; obtains the total of the ages

; of the possibly empty

; sequence of astros

The difference between the reader functions person-name and astro-name is that
person-name can be correctly applied to any person, including an astronaut, while
astro-name can be correctly applied only to an astronaut. An implementation might
check for incorrect use of reader functions.

At most one :include can be supplied in a single defstruct. The argument to :include

is required and must be the name of some previously defined structure. If the structure
being defined has no :type option, then the included structure must also have had no
:type option supplied for it. If the structure being defined has a :type option, then the
included structure must have been declared with a :type option specifying the same
representation type.

If no :type option is involved, then the structure name of the including structure defini-
tion becomes the name of a data type, and therefore a valid type specifier recognizable by
typep; it becomes a subtype of the included structure. In the above example, astronaut is
a subtype of person; hence

(typep (make-astronaut) ’person) → true

indicating that all operations on persons also work on astronauts.

The structure using :include can specify default values or slot-options for the included
slots different from those the included structure specifies, by giving the :include option
as:

(:include included-structure-name {slot-description}*)

Each slot-description must have a slot-name that is the same as that of some slot in the
included structure. If a slot-description has no slot-initform, then in the new structure the

Structures 8–7

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

slot has no initial value. Otherwise its initial value form is replaced by the slot-initform in
the slot-description. A normally writable slot can be made read-only. If a slot is read-only
in the included structure, then it must also be so in the including structure. If a type is
supplied for a slot, it must be a subtype of the type specified in the included structure.

For example, if the default age for an astronaut is 45, then

(defstruct (astronaut (:include person (age 45)))

helmet-size

(favorite-beverage ’tang))

If :include is used with the :type option, then the effect is first to skip over as many
representation elements as needed to represent the included structure, then to skip over
any additional elements supplied by the :initial-offset option, and then to begin
allocation of elements from that point. For example:

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ’? :type symbol)

operand-1

operand-2) → BINOP

(defstruct (annotated-binop (:type list)

(:initial-offset 3)

(:include binop))

commutative associative identity) → ANNOTATED-BINOP

(make-annotated-binop :operator ’*

:operand-1 ’x

:operand-2 5

:commutative t

:associative t

:identity 1)

→ (NIL NIL BINOP * X 5 NIL NIL NIL T T 1)

The first two nil elements stem from the :initial-offset of 2 in the definition of
binop. The next four elements contain the structure name and three slots for binop.
The next three nil elements stem from the :initial-offset of 3 in the definition
of annotated-binop. The last three list elements contain the additional slots for an
annotated-binop.

:initial-offset

:initial-offset instructs defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option’s argument is the number of slots
defstruct should skip. :initial-offset can be used only if :type is also supplied.

:initial-offset allows slots to be allocated beginning at a representational element other
than the first. For example, the form

(defstruct (binop (:type list) (:initial-offset 2))

8–8 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

(operator ’? :type symbol)

operand-1

operand-2) → BINOP

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5)

→ (NIL NIL + X 5)

(make-binop :operand-2 4 :operator ’*)

→ (NIL NIL * NIL 4)

The selector functions binop-operator, binop-operand-1, and binop-operand-2 would be
essentially equivalent to third, fourth, and fifth, respectively. Similarly, the form

(defstruct (binop (:type list) :named (:initial-offset 2))

(operator ’? :type symbol)

operand-1

operand-2) → BINOP

would result in the following behavior for make-binop:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5) → (NIL NIL BINOP + X 5)

(make-binop :operand-2 4 :operator ’*) → (NIL NIL BINOP * NIL 4)

The first two nil elements stem from the :initial-offset of 2 in the definition of binop.
The next four elements contain the structure name and three slots for binop.

:named

:named specifies that the structure is named. If no :type is supplied, then the structure is
always named.

For example:

(defstruct (binop (:type list))

(operator ’? :type symbol)

operand-1

operand-2) → BINOP

This defines a constructor function make-binop and three selector functions, namely
binop-operator, binop-operand-1, and binop-operand-2. (It does not, however, define a
predicate binop-p, for reasons explained below.)

The effect of make-binop is simply to construct a list of length three:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5) → (+ X 5)

(make-binop :operand-2 4 :operator ’*) → (* NIL 4)

It is just like the function list except that it takes keyword arguments and performs slot
defaulting appropriate to the binop conceptual data type. Similarly, the selector functions

Structures 8–9

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

binop-operator, binop-operand-1, and binop-operand-2 are essentially equivalent to car,
cadr, and caddr, respectively. They might not be completely equivalent because, for
example, an implementation would be justified in adding error-checking code to ensure
that the argument to each selector function is a length-3 list.

binop is a conceptual data type in that it is not made a part of the Common Lisp type
system. typep does not recognize binop as a type specifier , and type-of returns list

when given a binop structure. There is no way to distinguish a data structure constructed
by make-binop from any other list that happens to have the correct structure.

There is not any way to recover the structure name binop from a structure created by
make-binop. This can only be done if the structure is named. A named structure has
the property that, given an instance of the structure, the structure name (that names
the type) can be reliably recovered. For structures defined with no :type option, the
structure name actually becomes part of the Common Lisp data-type system. type-of ,
when applied to such a structure, returns the structure name as the type of the object ;
typep recognizes the structure name as a valid type specifier .

For structures defined with a :type option, type-of returns a type specifier such as list

or (vector t), depending on the type supplied to the :type option. The structure name
does not become a valid type specifier . However, if the :named option is also supplied,
then the first component of the structure (as created by a defstruct constructor function)
always contains the structure name. This allows the structure name to be recovered from
an instance of the structure and allows a reasonable predicate for the conceptual type to
be defined: the automatically defined name-p predicate for the structure operates by first
checking that its argument is of the proper type (list, (vector t), or whatever) and then
checking whether the first component contains the appropriate type name.

Consider the binop example shown above, modified only to include the :named option:

(defstruct (binop (:type list) :named)

(operator ’? :type symbol)

operand-1

operand-2) → BINOP

As before, this defines a constructor function make-binop and three selector functions
binop-operator, binop-operand-1, and binop-operand-2. It also defines a predicate
binop-p. The effect of make-binop is now to construct a list of length four:

(make-binop :operator ’+ :operand-1 ’x :operand-2 5) → (BINOP + X 5)

(make-binop :operand-2 4 :operator ’*) → (BINOP * NIL 4)

The structure has the same layout as before except that the structure name binop is
included as the first list element. The selector functions binop-operator, binop-operand-1,
and binop-operand-2 are essentially equivalent to cadr, caddr, and cadddr, respectively.
The predicate binop-p is more or less equivalent to this definition:

(defun binop-p (x)

8–10 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

(and (consp x) (eq (car x) ’binop))) → BINOP-P

The name binop is still not a valid type specifier recognizable to typep, but at least there
is a way of distinguishing binop structures from other similarly defined structures.

:predicate

This option takes one argument, which specifies the name of the type predicate. If the
argument is not supplied or if the option itself is not supplied, the name of the predicate
is made by concatenating the name of the structure to the string "-P", interning the
name in whatever package is current at the time defstruct is expanded. If the argument
is provided and is nil, no predicate is defined. A predicate can be defined only if the
structure is named; if :type is supplied and :named is not supplied, then :predicate must
either be unsupplied or have the value nil.

:print-function, :print-object

The :print-function and :print-object options specify that a print-object method
for structures of type structure-name should be generated. These options are not syn-
onyms, but do perform a similar service; the choice of which option (:print-function or
:print-object) is used affects how the function named printer-name is called. Only one of
these options may be used, and these options may be used only if :type is not supplied.

If the :print-function option is used, then when a structure of type structure-name is to
be printed, the designated printer function is called on three arguments :

– the structure to be printed (a generalized instance of structure-name).

– a stream to print to.

– an integer indicating the current depth. The magnitude of this integer may
vary between implementations ; however, it can reliably be compared against
print-level to determine whether depth abbreviation is appropriate.

Specifying (:print-function printer-name) is approximately equivalent to specifying:

(defmethod print-object ((object structure-name) stream)

(funcall (function printer-name) object stream 〈〈current-print-depth〉〉))

where the 〈〈current-print-depth〉〉 represents the printer’s belief of how deep it is currently
printing. It is implementation-dependent whether 〈〈current-print-depth〉〉 is always 0 and
print-level , if non-nil , is re-bound to successively smaller values as printing descends
recursively, or whether current-print-depth varies in value as printing descends recursively
and *print-level* remains constant during the same traversal.

If the :print-object option is used, then when a structure of type structure-name is to be
printed, the designated printer function is called on two arguments:

Structures 8–11

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

– the structure to be printed.

– the stream to print to.

Specifying (:print-object printer-name) is equivalent to specifying:

(defmethod print-object ((object structure-name) stream)

(funcall (function printer-name) object stream))

If no :type option is supplied, and if either a :print-function or a :print-object option
is supplied, and if no printer-name is supplied, then a print-object method specialized for
structure-name is generated that calls a function that implements the default printing
behavior for structures using #S notation; see Section 22.1.3.12 (Printing Structures).

If neither a :print-function nor a :print-object option is supplied, then defstruct does
not generate a print-object method specialized for structure-name and some default
behavior is inherited either from a structure named in an :include option or from the
default behavior for printing structures; see the function print-object and Section
22.1.3.12 (Printing Structures).

When *print-circle* is true, a user-defined print function can print objects to the sup-
plied stream using write, prin1, princ, or format and expect circularities to be detected
and printed using the #n# syntax. This applies to methods on print-object in addition
to :print-function options. If a user-defined print function prints to a stream other than
the one that was supplied, then circularity detection starts over for that stream. See the
variable *print-circle*.

:type

:type explicitly specifies the representation to be used for the structure. Its argument
must be one of these types :

vector

This produces the same result as specifying (vector t). The structure is rep-
resented as a general vector , storing components as vector elements. The first
component is vector element 1 if the structure is :named, and element 0 otherwise.

(vector element-type)

The structure is represented as a (possibly specialized) vector , storing compo-
nents as vector elements. Every component must be of a type that can be stored
in a vector of the type specified. The first component is vector element 1 if the
structure is :named, and element 0 otherwise. The structure can be :named only if
the type symbol is a subtype of the supplied element-type.

list

8–12 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

The structure is represented as a list . The first component is the cadr if the
structure is :named, and the car if it is not :named.

Specifying this option has the effect of forcing a specific representation and of forcing the
components to be stored in the order specified in defstruct in corresponding successive el-
ements of the specified representation. It also prevents the structure name from becoming
a valid type specifier recognizable by typep.

For example:

(defstruct (quux (:type list) :named) x y)

should make a constructor that builds a list exactly like the one that list produces, with
quux as its car .

If this type is defined:

(deftype quux () ’(satisfies quux-p))

then this form

(typep (make-quux) ’quux)

should return precisely what this one does

(typep (list ’quux nil nil) ’quux)

If :type is not supplied, the structure is represented as an object of type
structure-object.

defstruct without a :type option defines a class with the structure name as its name.
The metaclass of structure instances is structure-class.

The consequences of redefining a defstruct structure are undefined.

In the case where no defstruct options have been supplied, the following functions are automati-
cally defined to operate on instances of the new structure:

Predicate

A predicate with the name structure-name-p is defined to test membership in the
structure type. The predicate (structure-name-p object) is true if an object is of
this type; otherwise it is false. typep can also be used with the name of the new
type to test whether an object belongs to the type. Such a function call has the form
(typep object ’structure-name).

Component reader functions

Reader functions are defined to read the components of the structure. For each slot
name, there is a corresponding reader function with the name structure-name-slot-name.

Structures 8–13

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

This function reads the contents of that slot. Each reader function takes one argument,
which is an instance of the structure type. setf can be used with any of these reader
functions to alter the slot contents.

Constructor function

A constructor function with the name make-structure-name is defined. This function
creates and returns new instances of the structure type.

Copier function

A copier function with the name copy-structure-name is defined. The copier function
takes an object of the structure type and creates a new object of the same type that is a
copy of the first. The copier function creates a new structure with the same component
entries as the original. Corresponding components of the two structure instances are eql.

If a defstruct form appears as a top level form, the compiler must make the structure type
name recognized as a valid type name in subsequent declarations (as for deftype) and make the
structure slot readers known to setf . In addition, the compiler must save enough information
about the structure type so that further defstruct definitions can use :include in a subsequent
deftype in the same file to refer to the structure type name. The functions which defstruct

generates are not defined in the compile time environment, although the compiler may save
enough information about the functions to code subsequent calls inline. The #S reader macro
might or might not recognize the newly defined structure type name at compile time.

Examples:
An example of a structure definition follows:

(defstruct ship

x-position

y-position

x-velocity

y-velocity

mass)

This declares that every ship is an object with five named components. The evaluation of this
form does the following:

1. It defines ship-x-position to be a function of one argument, a ship, that returns the
x-position of the ship; ship-y-position and the other components are given similar
function definitions. These functions are called the access functions, as they are used to
access elements of the structure.

2. ship becomes the name of a type of which instances of ships are elements. ship becomes
acceptable to typep, for example; (typep x ’ship) is true if x is a ship and false if x is
any object other than a ship.

8–14 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

3. A function named ship-p of one argument is defined; it is a predicate that is true if its
argument is a ship and is false otherwise.

4. A function called make-ship is defined that, when invoked, creates a data structure with
five components, suitable for use with the access functions. Thus executing

(setq ship2 (make-ship))

sets ship2 to a newly created ship object . One can supply the initial values of any desired
component in the call to make-ship by using keyword arguments in this way:

(setq ship2 (make-ship :mass *default-ship-mass*

:x-position 0

:y-position 0))

This constructs a new ship and initializes three of its components. This function is called
the “constructor function” because it constructs a new structure.

5. A function called copy-ship of one argument is defined that, when given a ship object ,
creates a new ship object that is a copy of the given one. This function is called the
“copier function.”

setf can be used to alter the components of a ship:

(setf (ship-x-position ship2) 100)

This alters the x-position of ship2 to be 100. This works because defstruct behaves as if it
generates an appropriate defsetf for each access function.

;;;

;;; Example 1

;;; define town structure type

;;; area, watertowers, firetrucks, population, elevation are its components

;;;

(defstruct town

area

watertowers

(firetrucks 1 :type fixnum) ;an initialized slot

population

(elevation 5128 :read-only t)) ;a slot that can’t be changed

→ TOWN

;create a town instance

(setq town1 (make-town :area 0 :watertowers 0)) → #S(TOWN...)

;town’s predicate recognizes the new instance

(town-p town1) → true
;new town’s area is as specified by make-town

(town-area town1) → 0

;new town’s elevation has initial value

Structures 8–15

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

(town-elevation town1) → 5128

;setf recognizes reader function

(setf (town-population town1) 99) → 99

(town-population town1) → 99

;copier function makes a copy of town1

(setq town2 (copy-town town1)) → #S(TOWN...)

(= (town-population town1) (town-population town2)) → true
;since elevation is a read-only slot, its value can be set only

;when the structure is created

(setq town3 (make-town :area 0 :watertowers 3 :elevation 1200))

→ #S(TOWN...)

;;;

;;; Example 2

;;; define clown structure type

;;; this structure uses a nonstandard prefix

;;;

(defstruct (clown (:conc-name bozo-))

(nose-color ’red)

frizzy-hair-p polkadots) → CLOWN

(setq funny-clown (make-clown)) → #S(CLOWN)

;use non-default reader name

(bozo-nose-color funny-clown) → RED

(defstruct (klown (:constructor make-up-klown) ;similar def using other

(:copier clone-klown) ;customizing keywords

(:predicate is-a-bozo-p))

nose-color frizzy-hair-p polkadots) → klown

;custom constructor now exists

(fboundp ’make-up-klown) → true
;;;

;;; Example 3

;;; define a vehicle structure type

;;; then define a truck structure type that includes

;;; the vehicle structure

;;;

(defstruct vehicle name year (diesel t :read-only t)) → VEHICLE

(defstruct (truck (:include vehicle (year 79)))

load-limit

(axles 6)) → TRUCK

(setq x (make-truck :name ’mac :diesel t :load-limit 17))

→ #S(TRUCK...)

;vehicle readers work on trucks

(vehicle-name x)

→ MAC

;default taken from :include clause

8–16 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

defstruct

(vehicle-year x)

→ 79

(defstruct (pickup (:include truck)) ;pickup type includes truck

camper long-bed four-wheel-drive) → PICKUP

(setq x (make-pickup :name ’king :long-bed t)) → #S(PICKUP...)

;:include default inherited

(pickup-year x) → 79

;;;

;;; Example 4

;;; use of BOA constructors

;;;

(defstruct (dfs-boa ;BOA constructors

(:constructor make-dfs-boa (a b c))

(:constructor create-dfs-boa

(a &optional b (c ’cc) &rest d &aux e (f ’ff))))

a b c d e f) → DFS-BOA

;a, b, and c set by position, and the rest are uninitialized

(setq x (make-dfs-boa 1 2 3)) → #(DFS-BOA...)

(dfs-boa-a x) → 1

;a and b set, c and f defaulted

(setq x (create-dfs-boa 1 2)) → #(DFS-BOA...)

(dfs-boa-b x) → 2

(eq (dfs-boa-c x) ’cc) → true
;a, b, and c set, and the rest are collected into d

(setq x (create-dfs-boa 1 2 3 4 5 6)) → #(DFS-BOA...)

(dfs-boa-d x) → (4 5 6)

Exceptional Situations:
If any two slot names (whether present directly or inherited by the :include option) are the same
under string=, defstruct should signal an error of type program-error.

The consequences are undefined if the included-structure-name does not name a structure type.

See Also:
documentation, print-object, setf , subtypep, type-of , typep, Section 3.2 (Compilation)

Notes:
The printer-name should observe the values of such printer-control variables as *print-escape*.

The restriction against issuing a warning for type mismatches between a slot-initform and the
corresponding slot’s :type option is necessary because a slot-initform must be specified in order to
specify slot options; in some cases, no suitable default may exist.

The mechanism by which defstruct arranges for slot accessors to be usable with setf is
implementation-dependent ; for example, it may use setf functions , setf expanders , or some other
implementation-dependent mechanism known to that implementation’s code for setf .

Structures 8–17

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

copy-structure Function

Syntax:
copy-structure structure → copy

Arguments and Values:
structure—a structure.

copy—a copy of the structure.

Description:
Returns a copy6 of the structure.

Only the structure itself is copied; not the values of the slots.

See Also:
the :copier option to defstruct

Notes:
The copy is the same as the given structure under equalp, but not under equal.

8–18 Programming Language—Common Lisp

