
Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Programming Language—Common Lisp

9. Conditions

Conditions i

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

ii Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

9.1 Condition System Concepts
Common Lisp constructs are described not only in terms of their behavior in situations during
which they are intended to be used (see the “Description” part of each operator specification),
but in all other situations (see the “Exceptional Situations” part of each operator specification).

A situation is the evaluation of an expression in a specific context. A condition is an object that
represents a specific situation that has been detected. Conditions are generalized instances of the
class condition. A hierarchy of condition classes is defined in Common Lisp. A condition has
slots that contain data relevant to the situation that the condition represents.

An error is a situation in which normal program execution cannot continue correctly without
some form of intervention (either interactively by the user or under program control). Not all
errors are detected. When an error goes undetected, the effects can be implementation-dependent ,
implementation-defined , unspecified, or undefined. See Section 1.4 (Definitions). All detected
errors can be represented by conditions , but not all conditions represent errors.

Signaling is the process by which a condition can alter the flow of control in a program by raising
the condition which can then be handled . The functions error, cerror, signal, and warn are used
to signal conditions .

The process of signaling involves the selection and invocation of a handler from a set of active
handlers . A handler is a function of one argument (the condition) that is invoked to handle a
condition. Each handler is associated with a condition type, and a handler will be invoked only
on a condition of the handler ’s associated type.

Active handlers are established dynamically (see handler-bind or handler-case). Handlers are
invoked in a dynamic environment equivalent to that of the signaler, except that the set of active
handlers is bound in such a way as to include only those that were active at the time the handler
being invoked was established . Signaling a condition has no side-effect on the condition, and there
is no dynamic state contained in a condition.

If a handler is invoked, it can address the situation in one of three ways:

Decline

It can decline to handle the condition. It does this by simply returning rather than
transferring control. When this happens, any values returned by the handler are ignored
and the next most recently established handler is invoked. If there is no such handler
and the signaling function is error or cerror, the debugger is entered in the dynamic
environment of the signaler. If there is no such handler and the signaling function is
either signal or warn, the signaling function simply returns nil.

Handle

It can handle the condition by performing a non-local transfer of control. This can be
done either primitively by using go, return, throw or more abstractly by using a function
such as abort or invoke-restart.

Conditions 9–1

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Defer

It can put off a decision about whether to handle or decline, by any of a number of ac-
tions, but most commonly by signaling another condition, resignaling the same condition,
or forcing entry into the debugger.

9.1.1 Condition Types

Figure 9–1 lists the standardized condition types . Additional condition types can be defined by
using define-condition.

arithmetic-error floating-point-overflow simple-type-error

cell-error floating-point-underflow simple-warning

condition package-error storage-condition

control-error parse-error stream-error

division-by-zero print-not-readable style-warning

end-of-file program-error type-error

error reader-error unbound-slot

file-error serious-condition unbound-variable

floating-point-inexact simple-condition undefined-function

floating-point-invalid-operation simple-error warning

Figure 9–1. Standardized Condition Types

All condition types are subtypes of type condition. That is,

(typep c ’condition) → true

if and only if c is a condition.

Implementations must define all specified subtype relationships. Except where noted, all subtype
relationships indicated in this document are not mutually exclusive. A condition inherits the
structure of its supertypes .

The metaclass of the class condition is not specified. Names of condition types may be used to
specify supertype relationships in define-condition, but the consequences are not specified if an
attempt is made to use a condition type as a superclass in a defclass form.

Figure 9–2 shows operators that define condition types and creating conditions .

define-condition make-condition

Figure 9–2. Operators that define and create conditions.

9–2 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Figure 9–3 shows operators that read the value of condition slots .

arithmetic-error-operands simple-condition-format-arguments

arithmetic-error-operation simple-condition-format-control

cell-error-name stream-error-stream

file-error-pathname type-error-datum

package-error-package type-error-expected-type

print-not-readable-object unbound-slot-instance

Figure 9–3. Operators that read condition slots.

9.1.1.1 Serious Conditions

A serious condition is a condition serious enough to require interactive intervention if not han-
dled. Serious conditions are typically signaled with error or cerror; non-serious conditions are
typically signaled with signal or warn.

9.1.2 Creating Conditions

The function make-condition can be used to construct a condition object explicitly. Functions
such as error, cerror, signal, and warn operate on conditions and might create condition objects
implicitly. Macros such as ccase, ctypecase, ecase, etypecase, check-type, and assert might also
implicitly create (and signal) conditions .

9.1.2.1 Condition Designators

A number of the functions in the condition system take arguments which are identified as condi-
tion designators. By convention, those arguments are notated as

datum &rest arguments

Taken together, the datum and the arguments are “designators for a condition of default type
default-type.” How the denoted condition is computed depends on the type of the datum:

• If the datum is a symbol naming a condition type . . .

The denoted condition is the result of

(apply #’make-condition datum arguments)

Conditions 9–3

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

• If the datum is a format control . . .

The denoted condition is the result of

(make-condition defaulted-type
:format-control datum
:format-arguments arguments)

where the defaulted-type is a subtype of default-type.

• If the datum is a condition . . .

The denoted condition is the datum itself. In this case, unless otherwise specified by the
description of the operator in question, the arguments must be null ; that is, the consequences
are undefined if any arguments were supplied.

Note that the default-type gets used only in the case where the datum string is supplied. In the
other situations, the resulting condition is not necessarily of type default-type.

Here are some illustrations of how different condition designators can denote equivalent condition
objects :

(let ((c (make-condition ’arithmetic-error :operator ’/ :operands ’(7 0))))

(error c))

≡ (error ’arithmetic-error :operator ’/ :operands ’(7 0))

(error "Bad luck.")

≡ (error ’simple-error :format-control "Bad luck." :format-arguments ’())

9.1.3 Printing Conditions

If the :report argument to define-condition is used, a print function is defined that is called
whenever the defined condition is printed while the value of *print-escape* is false. This func-
tion is called the condition reporter; the text which it outputs is called a report message.

When a condition is printed and *print-escape* is false, the condition reporter for the condition
is invoked. Conditions are printed automatically by functions such as invoke-debugger, break,
and warn.

When *print-escape* is true, the object should print in an abbreviated fashion according to the
style of the implementation (e.g., by print-unreadable-object). It is not required that a condition
can be recreated by reading its printed representation.

No function is provided for directly accessing or invoking condition reporters .

9–4 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

9.1.3.1 Recommended Style in Condition Reporting

In order to ensure a properly aesthetic result when presenting report messages to the user, certain
stylistic conventions are recommended.

There are stylistic recommendations for the content of the messages output by condition re-
porters , but there are no formal requirements on those programs . If a program violates the
recommendations for some message, the display of that message might be less aesthetic than if
the guideline had been observed, but the program is still considered a conforming program.

The requirements on a program or implementation which invokes a condition reporter are some-
what stronger. A conforming program must be permitted to assume that if these style guidelines
are followed, proper aesthetics will be maintained. Where appropriate, any specific requirements
on such routines are explicitly mentioned below.

9.1.3.1.1 Capitalization and Punctuation in Condition Reports

It is recommended that a report message be a complete sentences, in the proper case and cor-
rectly punctuated. In English, for example, this means the first letter should be uppercase, and
there should be a trailing period.

(error "This is a message") ; Not recommended

(error "this is a message.") ; Not recommended

(error "This is a message.") ; Recommended instead

9.1.3.1.2 Leading and Trailing Newlines in Condition Reports

It is recommended that a report message not begin with any introductory text, such as
“Error: ” or “Warning: ” or even just freshline or newline. Such text is added, if appropri-
ate to the context, by the routine invoking the condition reporter .

It is recommended that a report message not be followed by a trailing freshline or newline. Such
text is added, if appropriate to the context, by the routine invoking the condition reporter .

(error "This is a message.~%") ; Not recommended

(error "~&This is a message.") ; Not recommended

(error "~&This is a message.~%") ; Not recommended

(error "This is a message.") ; Recommended instead

9.1.3.1.3 Embedded Newlines in Condition Reports

Especially if it is long, it is permissible and appropriate for a report message to contain one or
more embedded newlines .

If the calling routine conventionally inserts some additional prefix (such as “Error: ” or
“;; Error: ”) on the first line of the message, it must also assure that an appropriate prefix

Conditions 9–5

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

will be added to each subsequent line of the output, so that the left edge of the message output
by the condition reporter will still be properly aligned.

(defun test ()

(error "This is an error message.~%It has two lines."))

;; Implementation A

(test)

This is an error message.

It has two lines.

;; Implementation B

(test)

;; Error: This is an error message.

;; It has two lines.

;; Implementation C

(test)

>> Error: This is an error message.

It has two lines.

9.1.3.1.4 Note about Tabs in Condition Reports

Because the indentation of a report message might be shifted to the right or left by an arbitrary
amount, special care should be taken with the semi-standard character 〈Tab〉 (in those implemen-
tations that support such a character). Unless the implementation specifically defines its behavior
in this context, its use should be avoided.

9.1.3.1.5 Mentioning Containing Function in Condition Reports

The name of the containing function should generally not be mentioned in report messages .
It is assumed that the debugger will make this information accessible in situations where it is
necessary and appropriate.

9.1.4 Signaling and Handling Conditions

The operation of the condition system depends on the ordering of active applicable handlers from
most recent to least recent.

Each handler is associated with a type specifier that must designate a subtype of type condition.
A handler is said to be applicable to a condition if that condition is of the type designated by the
associated type specifier .

Active handlers are established by using handler-bind (or an abstraction based on handler-bind,
such as handler-case or ignore-errors).

Active handlers can be established within the dynamic scope of other active handlers . At any
point during program execution, there is a set of active handlers . When a condition is signaled,

9–6 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

the most recent active applicable handler for that condition is selected from this set. Given a
condition, the order of recentness of active applicable handlers is defined by the following two
rules:

1. Each handler in a set of active handlers H1 is more recent than every handler in a set H2

if the handlers in H2 were active when the handlers in H1 were established.

2. Let h1 and h2 be two applicable active handlers established by the same form. Then h1 is
more recent than h2 if h1 was defined to the left of h2 in the form that established them.

Once a handler in a handler binding form (such as handler-bind or handler-case) has been
selected, all handlers in that form become inactive for the remainder of the signaling process.
While the selected handler runs, no other handler established by that form is active. That is, if
the handler declines, no other handler established by that form will be considered for possible
invocation.

Figure 9–4 shows operators relating to the handling of conditions .

handler-bind handler-case ignore-errors

Figure 9–4. Operators relating to handling conditions.

9.1.4.1 Signaling

When a condition is signaled, the most recent applicable active handler is invoked. Sometimes
a handler will decline by simply returning without a transfer of control. In such cases, the next
most recent applicable active handler is invoked.

If there are no applicable handlers for a condition that has been signaled, or if all applicable
handlers decline, the condition is unhandled.

The functions cerror and error invoke the interactive condition handler (the debugger) rather
than return if the condition being signaled, regardless of its type, is unhandled. In contrast, signal
returns nil if the condition being signaled, regardless of its type, is unhandled.

The variable *break-on-signals* can be used to cause the debugger to be entered before the
signaling process begins.

Figure 9–5 shows defined names relating to the signaling of conditions .

break-on-signals error warn

cerror signal

Figure 9–5. Defined names relating to signaling conditions.

Conditions 9–7

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

9.1.4.1.1 Resignaling a Condition

During the dynamic extent of the signaling process for a particular condition object , signaling the
same condition object again is permitted if and only if the situation represented in both cases are
the same.

For example, a handler might legitimately signal the condition object that is its argument in
order to allow outer handlers first opportunity to handle the condition. (Such a handlers is
sometimes called a “default handler.”) This action is permitted because the situation which the
second signaling process is addressing is really the same situation.

On the other hand, in an implementation that implemented asynchronous keyboard events by
interrupting the user process with a call to signal, it would not be permissible for two distinct
asynchronous keyboard events to signal identical condition objects at the same time for different
situations.

9.1.4.2 Restarts

The interactive condition handler returns only through non-local transfer of control to specially
defined restarts that can be set up either by the system or by user code. Transferring control to a
restart is called “invoking” the restart. Like handlers, active restarts are established dynamically,
and only active restarts can be invoked. An active restart can be invoked by the user from the
debugger or by a program by using invoke-restart.

A restart contains a function to be called when the restart is invoked, an optional name that
can be used to find or invoke the restart , and an optional set of interaction information for the
debugger to use to enable the user to manually invoke a restart .

The name of a restart is used by invoke-restart. Restarts that can be invoked only within the
debugger do not need names.

Restarts can be established by using restart-bind, restart-case, and with-simple-restart. A
restart function can itself invoke any other restart that was active at the time of establishment of
the restart of which the function is part.

The restarts established by a restart-bind form, a restart-case form, or a with-simple-restart

form have dynamic extent which extends for the duration of that form’s execution.

Restarts of the same name can be ordered from least recent to most recent according to the
following two rules:

1. Each restart in a set of active restarts R1 is more recent than every restart in a set R2 if
the restarts in R2 were active when the restarts in R1 were established.

2. Let r1 and r2 be two active restarts with the same name established by the same form.
Then r1 is more recent than r2 if r1 was defined to the left of r2 in the form that estab-
lished them.

9–8 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

If a restart is invoked but does not transfer control, the values resulting from the restart
function are returned by the function that invoked the restart, either invoke-restart or
invoke-restart-interactively.

9.1.4.2.1 Interactive Use of Restarts

For interactive handling, two pieces of information are needed from a restart : a report function
and an interactive function.

The report function is used by a program such as the debugger to present a description
of the action the restart will take. The report function is specified and established by the
:report-function keyword to restart-bind or the :report keyword to restart-case.

The interactive function, which can be specified using the :interactive-function keyword to
restart-bind or :interactive keyword to restart-case, is used when the restart is invoked interac-
tively, such as from the debugger, to produce a suitable list of arguments.

invoke-restart invokes the most recently established restart whose name is the same as the first
argument to invoke-restart. If a restart is invoked interactively by the debugger and does not
transfer control but rather returns values, the precise action of the debugger on those values is
implementation-defined .

9.1.4.2.2 Interfaces to Restarts

Some restarts have functional interfaces, such as abort, continue, muffle-warning, store-value,
and use-value. They are ordinary functions that use find-restart and invoke-restart internally,
that have the same name as the restarts they manipulate, and that are provided simply for
notational convenience.

Figure 9–6 shows defined names relating to restarts .

abort invoke-restart-interactively store-value

compute-restarts muffle-warning use-value

continue restart-bind with-simple-restart

find-restart restart-case

invoke-restart restart-name

Figure 9–6. Defined names relating to restarts.

9.1.4.2.3 Restart Tests

Each restart has an associated test, which is a function of one argument (a condition or nil)
which returns true if the restart should be visible in the current situation. This test is created by
the :test-function option to restart-bind or the :test option to restart-case.

Conditions 9–9

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

9.1.4.2.4 Associating a Restart with a Condition

A restart can be “associated with” a condition explicitly by with-condition-restarts, or implicitly
by restart-case. Such an assocation has dynamic extent .

A single restart may be associated with several conditions at the same time. A single condition
may have several associated restarts at the same time.

Active restarts associated with a particular condition can be detected by calling a function such
as find-restart, supplying that condition as the condition argument . Active restarts can also be
detected without regard to any associated condition by calling such a function without a condition
argument , or by supplying a value of nil for such an argument .

9.1.5 Assertions

Conditional signaling of conditions based on such things as key match, form evaluation, and type
are handled by assertion operators . Figure 9–7 shows operators relating to assertions.

assert check-type ecase

ccase ctypecase etypecase

Figure 9–7. Operators relating to assertions.

9.1.6 Notes about the Condition System’s Background

For a background reference to the abstract concepts detailed in this section, see Exceptional
Situations in Lisp. The details of that paper are not binding on this document, but may be
helpful in establishing a conceptual basis for understanding this material.

9–10 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

condition Condition Type

Class Precedence List:
condition, t

Description:
All types of conditions , whether error or non-error, must inherit from this type.

No additional subtype relationships among the specified subtypes of type condition are allowed,
except when explicitly mentioned in the text; however implementations are permitted to intro-
duce additional types and one of these types can be a subtype of any number of the subtypes of
type condition.

Whether a user-defined condition type has slots that are accessible by with-slots is
implementation-dependent . Furthermore, even in an implementation in which user-defined
condition types would have slots , it is implementation-dependent whether any condition types
defined in this document have such slots or, if they do, what their names might be; only the
reader functions documented by this specification may be relied upon by portable code.

Conforming code must observe the following restrictions related to conditions :

• define-condition, not defclass, must be used to define new condition types .

• make-condition, not make-instance, must be used to create condition objects explicitly.

• The :report option of define-condition, not defmethod for print-object, must be used
to define a condition reporter.

• slot-value, slot-boundp, slot-makunbound, and with-slots must not be used on condi-
tion objects . Instead, the appropriate accessor functions (defined by define-condition)
should be used.

warning Condition Type

Class Precedence List:
warning, condition, t

Description:
The type warning consists of all types of warnings.

Conditions 9–11

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

See Also:
style-warning

style-warning Condition Type

Class Precedence List:
style-warning, warning, condition, t

Description:
The type style-warning includes those conditions that represent situations involving code that is
conforming code but that is nevertheless considered to be faulty or substandard.

See Also:
muffle-warning

Notes:
An implementation might signal such a condition if it encounters code that uses deprecated
features or that appears unaesthetic or inefficient.

An ‘unused variable’ warning must be of type style-warning.

In general, the question of whether code is faulty or substandard is a subjective decision to be
made by the facility processing that code. The intent is that whenever such a facility wishes to
complain about code on such subjective grounds, it should use this condition type so that any
clients who wish to redirect or muffle superfluous warnings can do so without risking that they
will be redirecting or muffling other, more serious warnings.

serious-condition Condition Type

Class Precedence List:
serious-condition, condition, t

Description:
All conditions serious enough to require interactive intervention if not handled should inherit from
the type serious-condition. This condition type is provided primarily so that it may be included
as a superclass of other condition types ; it is not intended to be signaled directly.

Notes:
Signaling a serious condition does not itself force entry into the debugger. However, except in the
unusual situation where the programmer can assure that no harm will come from failing to handle

9–12 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

a serious condition, such a condition is usually signaled with error rather than signal in order to
assure that the program does not continue without handling the condition. (And conversely, it is
conventional to use signal rather than error to signal conditions which are not serious conditions ,
since normally the failure to handle a non-serious condition is not reason enough for the debugger
to be entered.)

error Condition Type

Class Precedence List:
error, serious-condition, condition, t

Description:
The type error consists of all conditions that represent errors .

cell-error Condition Type

Class Precedence List:
cell-error, error, serious-condition, condition, t

Description:
The type cell-error consists of error conditions that occur during a location access . The name
of the offending cell is initialized by the :name initialization argument to make-condition, and is
accessed by the function cell-error-name.

See Also:
cell-error-name

Conditions 9–13

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

cell-error-name Function

Syntax:
cell-error-name condition → name

Arguments and Values:
condition—a condition of type cell-error.

name—an object .

Description:
Returns the name of the offending cell involved in the situation represented by condition.

The nature of the result depends on the specific type of condition. For example, if the condition
is of type unbound-variable, the result is the name of the unbound variable which was being
accessed , if the condition is of type undefined-function, this is the name of the undefined function
which was being accessed , and if the condition is of type unbound-slot, this is the name of the
slot which was being accessed .

See Also:
cell-error, unbound-slot, unbound-variable, undefined-function, Section 9.1 (Condition System
Concepts)

parse-error Condition Type

Class Precedence List:
parse-error, error, serious-condition, condition, t

Description:
The type parse-error consists of error conditions that are related to parsing.

See Also:
parse-namestring, reader-error

9–14 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

storage-condition Condition Type

Class Precedence List:
storage-condition, serious-condition, condition, t

Description:
The type storage-condition consists of serious conditions that relate to problems with memory
management that are potentially due to implementation-dependent limits rather than semantic
errors in conforming programs , and that typically warrant entry to the debugger if not handled.
Depending on the details of the implementation, these might include such problems as stack
overflow, memory region overflow, and storage exhausted.

Notes:
While some Common Lisp operations might signal storage-condition because they are defined to
create objects , it is unspecified whether operations that are not defined to create objects create
them anyway and so might also signal storage-condition. Likewise, the evaluator itself might
create objects and so might signal storage-condition. (The natural assumption might be that
such object creation is naturally inefficient, but even that is implementation-dependent .) In
general, the entire question of how storage allocation is done is implementation-dependent , and so
any operation might signal storage-condition at any time. Because such a condition is indicative
of a limitation of the implementation or of the image rather than an error in a program, objects of
type storage-condition are not of type error.

assert Macro

Syntax:
assert test-form [({place}*) [datum-form {argument-form}*]]

→ nil

Arguments and Values:
test-form—a form; always evaluated.

place—a place; evaluated if an error is signaled.

datum-form—a form that evaluates to a datum. Evaluated each time an error is to be signaled, or
not at all if no error is to be signaled.

argument-form—a form that evaluates to an argument. Evaluated each time an error is to be
signaled, or not at all if no error is to be signaled.

datum, arguments—designators for a condition of default type error. (These designators are the
result of evaluating datum-form and each of the argument-forms.)

Conditions 9–15

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

assert

Description:
assert assures that test-form evaluates to true. If test-form evaluates to false, assert signals
a correctable error (denoted by datum and arguments). Continuing from this error using the
continue restart makes it possible for the user to alter the values of the places before assert

evaluates test-form again. If the value of test-form is non-nil , assert returns nil.

The places are generalized references to data upon which test-form depends, whose values can be
changed by the user in attempting to correct the error. Subforms of each place are only evaluated
if an error is signaled, and might be re-evaluated if the error is re-signaled (after continuing
without actually fixing the problem). The order of evaluation of the places is not specified; see
Section 5.1.1.1 (Evaluation of Subforms to Places). If a place form is supplied that produces more
values than there are store variables, the extra values are ignored. If the supplied form produces
fewer values than there are store variables, the missing values are set to nil.

Examples:

(setq x (make-array ’(3 5) :initial-element 3))

→ #2A((3 3 3 3 3) (3 3 3 3 3) (3 3 3 3 3))

(setq y (make-array ’(3 5) :initial-element 7))

→ #2A((7 7 7 7 7) (7 7 7 7 7) (7 7 7 7 7))

(defun matrix-multiply (a b)

(let ((*print-array* nil))

(assert (and (= (array-rank a) (array-rank b) 2)

(= (array-dimension a 1) (array-dimension b 0)))

(a b)

"Cannot multiply ~S by ~S." a b)

(really-matrix-multiply a b))) → MATRIX-MULTIPLY

(matrix-multiply x y)

⊲ Correctable error in MATRIX-MULTIPLY:

⊲ Cannot multiply #<ARRAY ...> by #<ARRAY ...>.

⊲ Restart options:

⊲ 1: You will be prompted for one or more new values.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Value for A: x

⊲ Value for B: (make-array ’(5 3) :initial-element 6)

→ #2A((54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54)

(54 54 54 54 54))

(defun double-safely (x) (assert (numberp x) (x)) (+ x x))

(double-safely 4)

→ 8

9–16 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(double-safely t)

⊲ Correctable error in DOUBLE-SAFELY: The value of (NUMBERP X) must be non-NIL.

⊲ Restart options:

⊲ 1: You will be prompted for one or more new values.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Value for X: 7

→ 14

Affected By:
break-on-signals

The set of active condition handlers .

See Also:
check-type, error, Section 5.1 (Generalized Reference)

Notes:
The debugger need not include the test-form in the error message, and the places should not be
included in the message, but they should be made available for the user’s perusal. If the user
gives the “continue” command, the values of any of the references can be altered. The details of
this depend on the implementation’s style of user interface.

error Function

Syntax:
error datum &rest arguments →

Arguments and Values:
datum, arguments—designators for a condition of default type simple-error.

Description:
error effectively invokes signal on the denoted condition.

If the condition is not handled, (invoke-debugger condition) is done. As a consequence of calling
invoke-debugger, error cannot directly return; the only exit from error can come by non-local
transfer of control in a handler or by use of an interactive debugging command.

Examples:

(defun factorial (x)

(cond ((or (not (typep x ’integer)) (minusp x))

(error "~S is not a valid argument to FACTORIAL." x))

((zerop x) 1)

Conditions 9–17

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

error

(t (* x (factorial (- x 1))))))

→ FACTORIAL

(factorial 20)

→ 2432902008176640000

(factorial -1)

⊲ Error: -1 is not a valid argument to FACTORIAL.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return to Lisp Toplevel.

⊲ Debug>

(setq a ’fred)

→ FRED

(if (numberp a) (1+ a) (error "~S is not a number." A))

⊲ Error: FRED is not a number.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return to Lisp Toplevel.

⊲ Debug> :Continue 1

⊲ Return to Lisp Toplevel.

(define-condition not-a-number (error)

((argument :reader not-a-number-argument :initarg :argument))

(:report (lambda (condition stream)

(format stream "~S is not a number."

(not-a-number-argument condition)))))

→ NOT-A-NUMBER

(if (numberp a) (1+ a) (error ’not-a-number :argument a))

⊲ Error: FRED is not a number.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return to Lisp Toplevel.

⊲ Debug> :Continue 1

⊲ Return to Lisp Toplevel.

Side Effects:
Handlers for the specified condition, if any, are invoked and might have side effects. Program
execution might stop, and the debugger might be entered.

Affected By:
Existing handler bindings.

break-on-signals

Signals an error of type type-error if datum and arguments are not designators for a condition.

See Also:
cerror, signal, format, ignore-errors, *break-on-signals*, handler-bind, Section 9.1 (Condition

9–18 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

System Concepts)

Notes:
Some implementations may provide debugger commands for interactively returning from indi-
vidual stack frames. However, it should be possible for the programmer to feel confident about
writing code like:

(defun wargames:no-win-scenario ()

(if (error "pushing the button would be stupid."))

(push-the-button))

In this scenario, there should be no chance that error will return and the button will get pushed.

While the meaning of this program is clear and it might be proven ‘safe’ by a formal theorem
prover, such a proof is no guarantee that the program is safe to execute. Compilers have been
known to have bugs, computers to have signal glitches, and human beings to manually intervene
in ways that are not always possible to predict. Those kinds of errors, while beyond the scope of
the condition system to formally model, are not beyond the scope of things that should seriously
be considered when writing code that could have the kinds of sweeping effects hinted at by this
example.

cerror Function

Syntax:
cerror continue-format-control datum &rest arguments → nil

Arguments and Values:
Continue-format-control—a format control .

datum, arguments—designators for a condition of default type simple-error.

Description:
cerror effectively invokes error on the condition named by datum. As with any function that
implicitly calls error, if the condition is not handled, (invoke-debugger condition) is executed.
While signaling is going on, and while in the debugger if it is reached, it is possible to continue
code execution (i.e., to return from cerror) using the continue restart .

If datum is a condition, arguments can be supplied, but are used only in conjunction with the
continue-format-control .

Examples:

(defun real-sqrt (n)

(when (minusp n)

(setq n (- n))

Conditions 9–19

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

cerror

(cerror "Return sqrt(~D) instead." "Tried to take sqrt(-~D)." n))

(sqrt n))

(real-sqrt 4)

→ 2.0

(real-sqrt -9)

⊲ Correctable error in REAL-SQRT: Tried to take sqrt(-9).

⊲ Restart options:

⊲ 1: Return sqrt(9) instead.

⊲ 2: Top level.

⊲ Debug> :continue 1

→ 3.0

(define-condition not-a-number (error)

((argument :reader not-a-number-argument :initarg :argument))

(:report (lambda (condition stream)

(format stream "~S is not a number."

(not-a-number-argument condition)))))

(defun assure-number (n)

(loop (when (numberp n) (return n))

(cerror "Enter a number."

’not-a-number :argument n)

(format t "~&Type a number: ")

(setq n (read))

(fresh-line)))

(assure-number ’a)

⊲ Correctable error in ASSURE-NUMBER: A is not a number.

⊲ Restart options:

⊲ 1: Enter a number.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Type a number: 1/2

→ 1/2

(defun assure-large-number (n)

(loop (when (and (numberp n) (> n 73)) (return n))

(cerror "Enter a number~:[~; a bit larger than ~D~]."

"~*~A is not a large number."

(numberp n) n)

(format t "~&Type a large number: ")

(setq n (read))

(fresh-line)))

9–20 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

cerror

(assure-large-number 10000)

→ 10000

(assure-large-number ’a)

⊲ Correctable error in ASSURE-LARGE-NUMBER: A is not a large number.

⊲ Restart options:

⊲ 1: Enter a number.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Type a large number: 88

→ 88

(assure-large-number 37)

⊲ Correctable error in ASSURE-LARGE-NUMBER: 37 is not a large number.

⊲ Restart options:

⊲ 1: Enter a number a bit larger than 37.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Type a large number: 259

→ 259

(define-condition not-a-large-number (error)

((argument :reader not-a-large-number-argument :initarg :argument))

(:report (lambda (condition stream)

(format stream "~S is not a large number."

(not-a-large-number-argument condition)))))

(defun assure-large-number (n)

(loop (when (and (numberp n) (> n 73)) (return n))

(cerror "Enter a number~3*~:[~; a bit larger than ~*~D~]."

’not-a-large-number

:argument n

:ignore (numberp n)

:ignore n

:allow-other-keys t)

(format t "~&Type a large number: ")

(setq n (read))

(fresh-line)))

(assure-large-number ’a)

⊲ Correctable error in ASSURE-LARGE-NUMBER: A is not a large number.

⊲ Restart options:

⊲ 1: Enter a number.

Conditions 9–21

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Type a large number: 88

→ 88

(assure-large-number 37)

⊲ Correctable error in ASSURE-LARGE-NUMBER: A is not a large number.

⊲ Restart options:

⊲ 1: Enter a number a bit larger than 37.

⊲ 2: Top level.

⊲ Debug> :continue 1

⊲ Type a large number: 259

→ 259

Affected By:
break-on-signals.

Existing handler bindings.

See Also:
error, format, handler-bind, *break-on-signals*, simple-type-error

Notes:
If datum is a condition type rather than a string , the format directive ~* may be especially useful
in the continue-format-control in order to ignore the keywords in the initialization argument list .
For example:

(cerror "enter a new value to replace ~*~s"

’not-a-number

:argument a)

check-type Macro

Syntax:
check-type place typespec [string] → nil

Arguments and Values:
place—a place.

typespec—a type specifier .

string—a string ; evaluated.

9–22 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

check-type

Description:
check-type signals a correctable error of type type-error if the contents of place are not of the
type typespec .

check-type can return only if the store-value restart is invoked, either explicitly from a han-
dler or implicitly as one of the options offered by the debugger. If the store-value restart is
invoked, check-type stores the new value that is the argument to the restart invocation (or that
is prompted for interactively by the debugger) in place and starts over, checking the type of the
new value and signaling another error if it is still not of the desired type.

The first time place is evaluated , it is evaluated by normal evaluation rules. It is later evaluated as
a place if the type check fails and the store-value restart is used; see Section 5.1.1.1 (Evaluation
of Subforms to Places).

string should be an English description of the type, starting with an indefinite article (“a” or
“an”). If string is not supplied, it is computed automatically from typespec . The automatically
generated message mentions place, its contents, and the desired type. An implementation may
choose to generate a somewhat differently worded error message if it recognizes that place is of
a particular form, such as one of the arguments to the function that called check-type. string is
allowed because some applications of check-type may require a more specific description of what
is wanted than can be generated automatically from typespec .

Examples:

(setq aardvarks ’(sam harry fred))

→ (SAM HARRY FRED)

(check-type aardvarks (array * (3)))

⊲ Error: The value of AARDVARKS, (SAM HARRY FRED),

⊲ is not a 3-long array.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a value to use instead.

⊲ 2: Return to Lisp Toplevel.

⊲ Debug> :CONTINUE 1

⊲ Use Value: #(SAM FRED HARRY)

→ NIL

aardvarks

→ #<ARRAY-T-3 13571>

(map ’list #’identity aardvarks)

→ (SAM FRED HARRY)

(setq aardvark-count ’foo)

→ FOO

(check-type aardvark-count (integer 0 *) "A positive integer")

⊲ Error: The value of AARDVARK-COUNT, FOO, is not a positive integer.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a value to use instead.

⊲ 2: Top level.

Conditions 9–23

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

check-type

⊲ Debug> :CONTINUE 2

(defmacro define-adder (name amount)

(check-type name (and symbol (not null)) "a name for an adder function")

(check-type amount integer)

‘(defun ,name (x) (+ x ,amount)))

(macroexpand ’(define-adder add3 3))

→ (defun add3 (x) (+ x 3))

(macroexpand ’(define-adder 7 7))

⊲ Error: The value of NAME, 7, is not a name for an adder function.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a value to use instead.

⊲ 2: Top level.

⊲ Debug> :Continue 1

⊲ Specify a value to use instead.

⊲ Type a form to be evaluated and used instead: ’ADD7

→ (defun add7 (x) (+ x 7))

(macroexpand ’(define-adder add5 something))

⊲ Error: The value of AMOUNT, SOMETHING, is not an integer.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a value to use instead.

⊲ 2: Top level.

⊲ Debug> :Continue 1

⊲ Type a form to be evaluated and used instead: 5

→ (defun add5 (x) (+ x 5))

Control is transferred to a handler.

Side Effects:
The debugger might be entered.

Affected By:
break-on-signals

The implementation.

See Also:
Section 9.1 (Condition System Concepts)

Notes:

(check-type place typespec)

9–24 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

≡ (assert (typep place ’typespec) (place)
’type-error :datum place :expected-type ’typespec)

simple-error Condition Type

Class Precedence List:
simple-error, simple-condition, error, serious-condition, condition, t

Description:
The type simple-error consists of conditions that are signaled by error or cerror when a format
control is supplied as the function’s first argument.

invalid-method-error Function

Syntax:
invalid-method-error method format-control &rest args → implementation-dependent

Arguments and Values:
method—a method .

format-control—a format control .

args—format arguments for the format-control .

Description:
The function invalid-method-error is used to signal an error of type error when there is an
applicable method whose qualifiers are not valid for the method combination type. The error
message is constructed by using the format-control suitable for format and any args to it. Because
an implementation may need to add additional contextual information to the error message,
invalid-method-error should be called only within the dynamic extent of a method combination
function.

The function invalid-method-error is called automatically when a method fails to satisfy every
qualifier pattern and predicate in a define-method-combination form. A method combination
function that imposes additional restrictions should call invalid-method-error explicitly if it
encounters a method it cannot accept.

Whether invalid-method-error returns to its caller or exits via throw is implementation-
dependent .

Conditions 9–25

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Side Effects:
The debugger might be entered.

Affected By:
break-on-signals

See Also:
define-method-combination

method-combination-error Function

Syntax:
method-combination-error format-control &rest args → implementation-dependent

Arguments and Values:
format-control—a format control .

args—format arguments for format-control .

Description:
The function method-combination-error is used to signal an error in method combination.

The error message is constructed by using a format-control suitable for format and any args
to it. Because an implementation may need to add additional contextual information to the
error message, method-combination-error should be called only within the dynamic extent of a
method combination function.

Whether method-combination-error returns to its caller or exits via throw is implementation-
dependent .

Side Effects:
The debugger might be entered.

Affected By:
break-on-signals

See Also:
define-method-combination

9–26 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

signal

signal Function

Syntax:
signal datum &rest arguments → nil

Arguments and Values:
datum, arguments—designators for a condition of default type simple-condition.

Description:
Signals the condition denoted by the given datum and arguments. If the condition is not handled,
signal returns nil.

Examples:

(defun handle-division-conditions (condition)

(format t "Considering condition for division condition handling~%")

(when (and (typep condition ’arithmetic-error)

(eq ’/ (arithmetic-error-operation condition)))

(invoke-debugger condition)))

HANDLE-DIVISION-CONDITIONS

(defun handle-other-arithmetic-errors (condition)

(format t "Considering condition for arithmetic condition handling~%")

(when (typep condition ’arithmetic-error)

(abort)))

HANDLE-OTHER-ARITHMETIC-ERRORS

(define-condition a-condition-with-no-handler (condition) ())

A-CONDITION-WITH-NO-HANDLER

(signal ’a-condition-with-no-handler)

NIL

(handler-bind ((condition #’handle-division-conditions)

(condition #’handle-other-arithmetic-errors))

(signal ’a-condition-with-no-handler))

Considering condition for division condition handling

Considering condition for arithmetic condition handling

NIL

(handler-bind ((arithmetic-error #’handle-division-conditions)

(arithmetic-error #’handle-other-arithmetic-errors))

(signal ’arithmetic-error :operation ’* :operands ’(1.2 b)))

Considering condition for division condition handling

Considering condition for arithmetic condition handling

Back to Lisp Toplevel

Side Effects:
The debugger might be entered due to *break-on-signals*.

Conditions 9–27

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Handlers for the condition being signaled might transfer control.

Affected By:
Existing handler bindings.

break-on-signals

See Also:
break-on-signals, error, simple-condition, Section 9.1.4 (Signaling and Handling Conditions)

Notes:
If (typep datum *break-on-signals*) yields true, the debugger is entered prior to beginning the
signaling process. The continue restart can be used to continue with the signaling process. This
is also true for all other functions and macros that should, might, or must signal conditions .

simple-condition Condition Type

Class Precedence List:
simple-condition, condition, t

Description:
The type simple-condition represents conditions that are signaled by signal whenever a format-
control is supplied as the function’s first argument. The format control and format arguments
are initialized with the initialization arguments named :format-control and :format-arguments

to make-condition, and are accessed by the functions simple-condition-format-control and
simple-condition-format-arguments. If format arguments are not supplied to make-condition,
nil is used as a default.

See Also:
simple-condition-format-control, simple-condition-format-arguments

9–28 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

simple-condition-format-control, simple-
condition-format-arguments Function

Syntax:
simple-condition-format-control condition → format-control

simple-condition-format-arguments condition → format-arguments

Arguments and Values:
condition—a condition of type simple-condition.

format-control—a format control .

format-arguments—a list .

Description:
simple-condition-format-control returns the format control needed to process the condition’s
format arguments .

simple-condition-format-arguments returns a list of format arguments needed to process the
condition’s format control .

Examples:

(setq foo (make-condition ’simple-condition

:format-control "Hi ~S"

:format-arguments ’(ho)))

→ #<SIMPLE-CONDITION 26223553>

(apply #’format nil (simple-condition-format-control foo)

(simple-condition-format-arguments foo))

→ "Hi HO"

See Also:
simple-condition, Section 9.1 (Condition System Concepts)

warn Function

Syntax:
warn datum &rest arguments → nil

Arguments and Values:
datum, arguments—designators for a condition of default type simple-warning.

Conditions 9–29

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

warn

Description:
Signals a condition of type warning. If the condition is not handled , reports the condition to
error output .

The precise mechanism for warning is as follows:

The warning condition is signaled

While the warning condition is being signaled, the muffle-warning restart is established
for use by a handler . If invoked, this restart bypasses further action by warn, which in
turn causes warn to immediately return nil.

If no handler for the warning condition is found

If no handlers for the warning condition are found, or if all such handlers decline, then
the condition is reported to error output by warn in an implementation-dependent
format.

nil is returned

The value returned by warn if it returns is nil.

Examples:

(defun foo (x)

(let ((result (* x 2)))

(if (not (typep result ’fixnum))

(warn "You’re using very big numbers."))

result))

→ FOO

(foo 3)

→ 6

(foo most-positive-fixnum)

⊲ Warning: You’re using very big numbers.

→ 4294967294

(setq *break-on-signals* t)

→ T

(foo most-positive-fixnum)

⊲ Break: Caveat emptor.

⊲ To continue, type :CONTINUE followed by an option number.

⊲ 1: Return from Break.

⊲ 2: Abort to Lisp Toplevel.

⊲ Debug> :continue 1

9–30 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

⊲ Warning: You’re using very big numbers.

→ 4294967294

Side Effects:
A warning is issued. The debugger might be entered.

Affected By:
Existing handler bindings.

break-on-signals, *error-output*.

Exceptional Situations:
If datum is a condition and if the condition is not of type warning, or arguments is non-nil , an
error of type type-error is signaled.

If datum is a condition type, the result of (apply #’make-condition datum arguments) must be of
type warning or an error of type type-error is signaled.

See Also:
break-on-signals, muffle-warning, signal

simple-warning Condition Type

Class Precedence List:
simple-warning, simple-condition, warning, condition, t

Description:
The type simple-warning represents conditions that are signaled by warn whenever a format
control is supplied as the function’s first argument.

Conditions 9–31

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

invoke-debugger Function

Syntax:
invoke-debugger condition →

Arguments and Values:
condition—a condition object .

Description:
invoke-debugger attempts to enter the debugger with condition.

If *debugger-hook* is not nil, it should be a function (or the name of a function) to be
called prior to entry to the standard debugger. The function is called with *debugger-hook*

bound to nil, and the function must accept two arguments: the condition and the value of
debugger-hook prior to binding it to nil. If the function returns normally, the standard
debugger is entered.

The standard debugger never directly returns. Return can occur only by a non-local transfer of
control, such as the use of a restart function.

Examples:

(ignore-errors ;Normally, this would suppress debugger entry

(handler-bind ((error #’invoke-debugger)) ;But this forces debugger entry

(error "Foo.")))

Debug: Foo.

To continue, type :CONTINUE followed by an option number:

1: Return to Lisp Toplevel.

Debug>

Side Effects:
debugger-hook is bound to nil, program execution is discontinued, and the debugger is en-
tered.

Affected By:
debug-io and *debugger-hook*.

See Also:
error, break

9–32 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

break

break Function

Syntax:
break &optional format-control &rest format-arguments → nil

Arguments and Values:
format-control—a format control . The default is implementation-dependent .

format-arguments—format arguments for the format-control .

Description:
break formats format-control and format-arguments and then goes directly into the debugger
without allowing any possibility of interception by programmed error-handling facilities.

If the continue restart is used while in the debugger, break immediately returns nil without
taking any unusual recovery action.

break binds *debugger-hook* to nil before attempting to enter the debugger.

Examples:

(break "You got here with arguments: ~:S." ’(FOO 37 A))

⊲ BREAK: You got here with these arguments: FOO, 37, A.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return from BREAK.

⊲ 2: Top level.

⊲ Debug> :CONTINUE 1

⊲ Return from BREAK.

→ NIL

Side Effects:
The debugger is entered.

Affected By:
debug-io.

See Also:
error, invoke-debugger.

Notes:
break is used as a way of inserting temporary debugging “breakpoints” in a program, not as a
way of signaling errors. For this reason, break does not take the continue-format-control argument
that cerror takes. This and the lack of any possibility of interception by condition handling are
the only program-visible differences between break and cerror.

Conditions 9–33

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

The user interface aspects of break and cerror are permitted to vary more widely, in order to
accomodate the interface needs of the implementation. For example, it is permissible for a Lisp
read-eval-print loop to be entered by break rather than the conventional debugger.

break could be defined by:

(defun break (&optional (format-control "Break") &rest format-arguments)

(with-simple-restart (continue "Return from BREAK.")

(let ((*debugger-hook* nil))

(invoke-debugger

(make-condition ’simple-condition

:format-control format-control

:format-arguments format-arguments))))

nil)

∗debugger-hook∗ Variable

Value Type:
a designator for a function of two arguments (a condition and the value of *debugger-hook* at
the time the debugger was entered), or nil.

Initial Value:
nil.

Description:
When the value of *debugger-hook* is non-nil , it is called prior to normal entry into the debug-
ger, either due to a call to invoke-debugger or due to automatic entry into the debugger from
a call to error or cerror with a condition that is not handled. The function may either handle
the condition (transfer control) or return normally (allowing the standard debugger to run). To
minimize recursive errors while debugging, *debugger-hook* is bound to nil by invoke-debugger

prior to calling the function.

Examples:

(defun one-of (choices &optional (prompt "Choice"))

(let ((n (length choices)) (i))

(do ((c choices (cdr c)) (i 1 (+ i 1)))

((null c))

(format t "~&[~D] ~A~%" i (car c)))

(do () ((typep i ‘(integer 1 ,n)))

(format t "~&~A: " prompt)

(setq i (read))

9–34 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(fresh-line))

(nth (- i 1) choices)))

(defun my-debugger (condition me-or-my-encapsulation)

(format t "~&Fooey: ~A" condition)

(let ((restart (one-of (compute-restarts))))

(if (not restart) (error "My debugger got an error."))

(let ((*debugger-hook* me-or-my-encapsulation))

(invoke-restart-interactively restart))))

(let ((*debugger-hook* #’my-debugger))

(+ 3 ’a))

⊲ Fooey: The argument to +, A, is not a number.

⊲ [1] Supply a replacement for A.

⊲ [2] Return to Cloe Toplevel.

⊲ Choice: 1

⊲ Form to evaluate and use: (+ 5 ’b)

⊲ Fooey: The argument to +, B, is not a number.

⊲ [1] Supply a replacement for B.

⊲ [2] Supply a replacement for A.

⊲ [3] Return to Cloe Toplevel.

⊲ Choice: 1

⊲ Form to evaluate and use: 1

→ 9

Affected By:
invoke-debugger

Notes:
When evaluating code typed in by the user interactively, it is sometimes useful to have the hook
function bind *debugger-hook* to the function that was its second argument so that recursive
errors can be handled using the same interactive facility.

∗break-on-signals∗ Variable

Value Type:
a type specifier .

Initial Value:
nil.

Conditions 9–35

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

∗break-on-signals∗

Description:
When (typep condition *break-on-signals*) returns true, calls to signal, and to other operators
such as error that implicitly call signal, enter the debugger prior to signaling the condition.

The continue restart can be used to continue with the normal signaling process when a break
occurs process due to *break-on-signals*.

Examples:

break-on-signals → NIL

(ignore-errors (error ’simple-error :format-control "Fooey!"))

→ NIL, #<SIMPLE-ERROR 32207172>

(let ((*break-on-signals* ’error))

(ignore-errors (error ’simple-error :format-control "Fooey!")))

⊲ Break: Fooey!

⊲ BREAK entered because of *BREAK-ON-SIGNALS*.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Continue to signal.

⊲ 2: Top level.

⊲ Debug> :CONTINUE 1

⊲ Continue to signal.

→ NIL, #<SIMPLE-ERROR 32212257>

(let ((*break-on-signals* ’error))

(error ’simple-error :format-control "Fooey!"))

⊲ Break: Fooey!

⊲ BREAK entered because of *BREAK-ON-SIGNALS*.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Continue to signal.

⊲ 2: Top level.

⊲ Debug> :CONTINUE 1

⊲ Continue to signal.

⊲ Error: Fooey!

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Top level.

⊲ Debug> :CONTINUE 1

⊲ Top level.

See Also:
break, signal, warn, error, typep, Section 9.1 (Condition System Concepts)

Notes:
break-on-signals is intended primarily for use in debugging code that does signaling. When
setting *break-on-signals*, the user is encouraged to choose the most restrictive specification

9–36 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

that suffices. Setting *break-on-signals* effectively violates the modular handling of condition
signaling. In practice, the complete effect of setting *break-on-signals* might be unpredictable in
some cases since the user might not be aware of the variety or number of calls to signal that are
used in code called only incidentally.

break-on-signals enables an early entry to the debugger but such an entry does not preclude
an additional entry to the debugger in the case of operations such as error and cerror.

handler-bind Macro

Syntax:
handler-bind ({↓binding}*) {form}* → {result}*

binding::=(type handler)

Arguments and Values:
type—a type specifier .

handler—a form; evaluated to produce a handler-function.

handler-function—a designator for a function of one argument .

forms—an implicit progn.

results—the values returned by the forms .

Description:
Executes forms in a dynamic environment where the indicated handler bindings are in effect.

Each handler should evaluate to a handler-function, which is used to handle conditions of the
given type during execution of the forms. This function should take a single argument, the
condition being signaled.

If more than one handler binding is supplied, the handler bindings are searched sequentially from
top to bottom in search of a match (by visual analogy with typecase). If an appropriate type
is found, the associated handler is run in a dynamic environment where none of these handler
bindings are visible (to avoid recursive errors). If the handler declines , the search continues for
another handler .

If no appropriate handler is found, other handlers are sought from dynamically enclosing con-
tours. If no handler is found outside, then signal returns or error enters the debugger.

Examples:
In the following code, if an unbound variable error is signaled in the body (and not handled by an
intervening handler), the first function is called.

Conditions 9–37

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(handler-bind ((unbound-variable #’(lambda ...))

(error #’(lambda ...)))

...)

If any other kind of error is signaled, the second function is called. In either case, neither handler
is active while executing the code in the associated function.

(defun trap-error-handler (condition)

(format *error-output* "~&~A~&" condition)

(throw ’trap-errors nil))

(defmacro trap-errors (&rest forms)

‘(catch ’trap-errors

(handler-bind ((error #’trap-error-handler))

,@forms)))

(list (trap-errors (signal "Foo.") 1)

(trap-errors (error "Bar.") 2)

(+ 1 2))

⊲ Bar.

→ (1 NIL 3)

Note that “Foo.” is not printed because the condition made by signal is a simple condition, which
is not of type error, so it doesn’t trigger the handler for error set up by trap-errors.

See Also:
handler-case

handler-case Macro

Syntax:
handler-case expression [[{↓error-clause}* | ↓no-error-clause]] → {result}*

clause::=↓error-clause | ↓no-error-clause

error-clause::=(typespec ([var]) {declaration}* {form}*)

no-error-clause::=(:no-error lambda-list {declaration}* {form}*)

Arguments and Values:
expression—a form.

typespec—a type specifier .

9–38 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

handler-case

var—a variable name.

lambda-list—an ordinary lambda list .

declaration—a declare expression; not evaluated.

form—a form.

results—In the normal situation, the values returned are those that result from the evaluation of
expression; in the exceptional situation when control is transferred to a clause, the value of the last
form in that clause is returned.

Description:
handler-case executes expression in a dynamic environment where various handlers are active.
Each error-clause specifies how to handle a condition matching the indicated typespec . A no-
error-clause allows the specification of a particular action if control returns normally.

If a condition is signaled for which there is an appropriate error-clause during the execution
of expression (i.e., one for which (typep condition ’typespec) returns true) and if there is no
intervening handler for a condition of that type, then control is transferred to the body of the
relevant error-clause. In this case, the dynamic state is unwound appropriately (so that the
handlers established around the expression are no longer active), and var is bound to the condition
that had been signaled. If more than one case is provided, those cases are made accessible in
parallel. That is, in

(handler-case form
(typespec1 (var1) form1)
(typespec2 (var2) form2))

if the first clause (containing form1) has been selected, the handler for the second is no longer
visible (or vice versa).

The clauses are searched sequentially from top to bottom. If there is type overlap between
typespecs, the earlier of the clauses is selected.

If var is not needed, it can be omitted. That is, a clause such as:

(typespec (var) (declare (ignore var)) form)

can be written (typespec () form).

If there are no forms in a selected clause, the case, and therefore handler-case, returns nil. If
execution of expression returns normally and no no-error-clause exists, the values returned by
expression are returned by handler-case. If execution of expression returns normally and a no-
error-clause does exist, the values returned are used as arguments to the function described
by constructing (lambda lambda-list {form}*) from the no-error-clause, and the values of that
function call are returned by handler-case. The handlers which were established around the
expression are no longer active at the time of this call.

Conditions 9–39

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

handler-case

Examples:

(defun assess-condition (condition)

(handler-case (signal condition)

(warning () "Lots of smoke, but no fire.")

((or arithmetic-error control-error cell-error stream-error)

(condition)

(format nil "~S looks especially bad." condition))

(serious-condition (condition)

(format nil "~S looks serious." condition))

(condition () "Hardly worth mentioning.")))

→ ASSESS-CONDITION

(assess-condition (make-condition ’stream-error :stream *terminal-io*))

→ "#<STREAM-ERROR 12352256> looks especially bad."

(define-condition random-condition (condition) ()

(:report (lambda (condition stream)

(declare (ignore condition))

(princ "Yow" stream))))

→ RANDOM-CONDITION

(assess-condition (make-condition ’random-condition))

→ "Hardly worth mentioning."

See Also:
handler-bind, ignore-errors, Section 9.1 (Condition System Concepts)

Notes:

(handler-case form

(type1 (var1) . body1)
(type2 (var2) . body2) ...)

is approximately equivalent to:

(block #1=#:g0001

(let ((#2=#:g0002 nil))

(tagbody

(handler-bind ((type1 #’(lambda (temp)

(setq #1# temp)

(go #3=#:g0003)))

(type2 #’(lambda (temp)

(setq #2# temp)

(go #4=#:g0004))) ...)

(return-from #1# form))

#3# (return-from #1# (let ((var1 #2#)) . body1))
#4# (return-from #1# (let ((var2 #2#)) . body2)) ...)))

(handler-case form

9–40 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(type1 (var1) . body1)
...

(:no-error (varN-1 varN-2 ...) . bodyN))

is approximately equivalent to:

(block #1=#:error-return

(multiple-value-call #’(lambda (varN-1 varN-2 ...) . bodyN)

(block #2=#:normal-return

(return-from #1#

(handler-case (return-from #2# form)

(type1 (var1) . body1) ...)))))

ignore-errors Macro

Syntax:
ignore-errors {form}* → {result}*

Arguments and Values:
forms—an implicit progn.

results—In the normal situation, the values of the forms are returned; in the exceptional situa-
tion, two values are returned: nil and the condition.

Description:
ignore-errors is used to prevent conditions of type error from causing entry into the debugger.

Specifically, ignore-errors executes forms in a dynamic environment where a handler for condi-
tions of type error has been established; if invoked, it handles such conditions by returning two
values , nil and the condition that was signaled , from the ignore-errors form.

If a normal return from the forms occurs, any values returned are returned by ignore-errors.

Examples:

(defun load-init-file (program)

(let ((win nil))

(ignore-errors ;if this fails, don’t enter debugger

(load (merge-pathnames (make-pathname :name program :type :lisp)

(user-homedir-pathname)))

(setq win t))

(unless win (format t "~&Init file failed to load.~%"))

win))

Conditions 9–41

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(load-init-file "no-such-program")

⊲ Init file failed to load.

NIL

See Also:
handler-case, Section 9.1 (Condition System Concepts)

Notes:

(ignore-errors . forms)

is equivalent to:

(handler-case (progn . forms)
(error (condition) (values nil condition)))

Because the second return value is a condition in the exceptional case, it is common (but not
required) to arrange for the second return value in the normal case to be missing or nil so that
the two situations can be distinguished.

define-condition Macro

Syntax:
define-condition name ({parent-type}*) ({↓slot-spec}*) {option}*

→ name

slot-spec::=slot-name | (slot-name ↓slot-option)

slot-option::=[[{:reader symbol}* |

{:writer ↓function-name}* |

{:accessor symbol}* |

{:allocation ↓allocation-type} |

{:initarg symbol}* |

{:initform form} |

{:type type-specifier}]]

option::=[[(:default-initargs . initarg-list) |

(:documentation string) |

(:report report-name)]]

9–42 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

define-condition

function-name::={symbol | (setf symbol)}

allocation-type::=:instance | :class

report-name::=string | symbol | lambda expression

Arguments and Values:
name—a symbol .

parent-type—a symbol naming a condition type. If no parent-types are supplied, the parent-types
default to (condition).

default-initargs—a list of keyword/value pairs .

Slot-spec – the name of a slot or a list consisting of the slot-name followed by zero or more
slot-options.

Slot-name – a slot name (a symbol), the list of a slot name, or the list of slot name/slot form
pairs.

Option – Any of the following:

:reader

:reader can be supplied more than once for a given slot and cannot be nil.

:writer

:writer can be supplied more than once for a given slot and must name a generic func-
tion.

:accessor

:accessor can be supplied more than once for a given slot and cannot be nil.

:allocation

:allocation can be supplied once at most for a given slot . The default if :allocation is
not supplied is :instance.

:initarg

:initarg can be supplied more than once for a given slot .

:initform

:initform can be supplied once at most for a given slot .

:type

:type can be supplied once at most for a given slot .

Conditions 9–43

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

define-condition

:documentation

:documentation can be supplied once at most for a given slot .

:report

:report can be supplied once at most.

Description:
define-condition defines a new condition type called name, which is a subtype of the type or
types named by parent-type. Each parent-type argument specifies a direct supertype of the new
condition. The new condition inherits slots and methods from each of its direct supertypes , and so
on.

If a slot name/slot form pair is supplied, the slot form is a form that can be evaluated by
make-condition to produce a default value when an explicit value is not provided. If no slot
form is supplied, the contents of the slot is initialized in an implementation-dependent way.

If the type being defined and some other type from which it inherits have a slot by the same
name, only one slot is allocated in the condition, but the supplied slot form overrides any slot
form that might otherwise have been inherited from a parent-type. If no slot form is supplied, the
inherited slot form (if any) is still visible.

Accessors are created according to the same rules as used by defclass.

A description of slot-options follows:

:reader

The :reader slot option specifies that an unqualified method is to be defined on the
generic function named by the argument to :reader to read the value of the given slot .

• The :initform slot option is used to provide a default initial value form to be used in
the initialization of the slot . This form is evaluated every time it is used to initialize the
slot . The lexical environment in which this form is evaluated is the lexical environment
in which the define-condition form was evaluated. Note that the lexical environment
refers both to variables and to functions . For local slots , the dynamic environment is
the dynamic environment in which make-condition was called; for shared slots , the
dynamic environment is the dynamic environment in which the define-condition form
was evaluated.

No implementation is permitted to extend the syntax of define-condition to allow
(slot-name form) as an abbreviation for (slot-name :initform form).

:initarg

The :initarg slot option declares an initialization argument named by its symbol ar-

9–44 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

define-condition

gument and specifies that this initialization argument initializes the given slot . If the
initialization argument has a value in the call to initialize-instance, the value is stored
into the given slot , and the slot’s :initform slot option, if any, is not evaluated. If none
of the initialization arguments specified for a given slot has a value, the slot is initialized
according to the :initform slot option, if specified.

:type

The :type slot option specifies that the contents of the slot is always of the specified type.
It effectively declares the result type of the reader generic function when applied to an
object of this condition type. The consequences of attempting to store in a slot a value
that does not satisfy the type of the slot is undefined.

:default-initargs

This option is treated the same as it would be defclass.

:documentation

The :documentation slot option provides a documentation string for the slot .

:report

Condition reporting is mediated through the print-object method for the condition type
in question, with *print-escape* always being nil. Specifying (:report report-name) in
the definition of a condition type C is equivalent to:

(defmethod print-object ((x c) stream)

(if *print-escape* (call-next-method) (report-name x stream)))

If the value supplied by the argument to :report (report-name) is a symbol or a lambda
expression, it must be acceptable to function. (function report-name) is evaluated in the
current lexical environment . It should return a function of two arguments, a condition
and a stream, that prints on the stream a description of the condition. This function is
called whenever the condition is printed while *print-escape* is nil.

If report-name is a string , it is a shorthand for

(lambda (condition stream)

(declare (ignore condition))

(write-string report-name stream))

This option is processed after the new condition type has been defined, so use of the
slot accessors within the :report function is permitted. If this option is not supplied,
information about how to report this type of condition is inherited from the parent-type.

The consequences are unspecifed if an attempt is made to read a slot that has not been explicitly
initialized and that has not been given a default value.

Conditions 9–45

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

define-condition

The consequences are unspecified if an attempt is made to assign the slots by using setf .

If a define-condition form appears as a top level form, the compiler must make name recog-
nizable as a valid type name, and it must be possible to reference the condition type as the
parent-type of another condition type in a subsequent define-condition form in the file being
compiled.

Examples:
The following form defines a condition of type peg/hole-mismatch which inherits from a condition
type called blocks-world-error:

(define-condition peg/hole-mismatch

(blocks-world-error)

((peg-shape :initarg :peg-shape

:reader peg/hole-mismatch-peg-shape)

(hole-shape :initarg :hole-shape

:reader peg/hole-mismatch-hole-shape))

(:report (lambda (condition stream)

(format stream "A ~A peg cannot go in a ~A hole."

(peg/hole-mismatch-peg-shape condition)

(peg/hole-mismatch-hole-shape condition)))))

The new type has slots peg-shape and hole-shape, so make-condition accepts
:peg-shape and :hole-shape keywords. The readers peg/hole-mismatch-peg-shape and
peg/hole-mismatch-hole-shape apply to objects of this type, as illustrated in the :report in-
formation.

The following form defines a condition type named machine-error which inherits from error:

(define-condition machine-error

(error)

((machine-name :initarg :machine-name

:reader machine-error-machine-name))

(:report (lambda (condition stream)

(format stream "There is a problem with ~A."

(machine-error-machine-name condition)))))

Building on this definition, a new error condition can be defined which is a subtype of
machine-error for use when machines are not available:

(define-condition machine-not-available-error (machine-error) ()

(:report (lambda (condition stream)

(format stream "The machine ~A is not available."

(machine-error-machine-name condition)))))

This defines a still more specific condition, built upon machine-not-available-error, which
provides a slot initialization form for machine-name but which does not provide any new slots or
report information. It just gives the machine-name slot a default initialization:

9–46 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(define-condition my-favorite-machine-not-available-error

(machine-not-available-error)

((machine-name :initform "mc.lcs.mit.edu")))

Note that since no :report clause was given, the information inherited from
machine-not-available-error is used to report this type of condition.

(define-condition ate-too-much (error)

((person :initarg :person :reader ate-too-much-person)

(weight :initarg :weight :reader ate-too-much-weight)

(kind-of-food :initarg :kind-of-food

:reader :ate-too-much-kind-of-food)))

→ ATE-TOO-MUCH

(define-condition ate-too-much-ice-cream (ate-too-much)

((kind-of-food :initform ’ice-cream)

(flavor :initarg :flavor

:reader ate-too-much-ice-cream-flavor

:initform ’vanilla))

(:report (lambda (condition stream)

(format stream "~A ate too much ~A ice-cream"

(ate-too-much-person condition)

(ate-too-much-ice-cream-flavor condition)))))

→ ATE-TOO-MUCH-ICE-CREAM

(make-condition ’ate-too-much-ice-cream

:person ’fred

:weight 300

:flavor ’chocolate)

→ #<ATE-TOO-MUCH-ICE-CREAM 32236101>

(format t "~A" *)

⊲ FRED ate too much CHOCOLATE ice-cream

→ NIL

See Also:
make-condition, defclass, Section 9.1 (Condition System Concepts)

make-condition Function

Syntax:
make-condition type &rest slot-initializations → condition

Arguments and Values:
type—a type specifier (for a subtype of condition).

Conditions 9–47

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

slot-initializations—an initialization argument list .

condition—a condition.

Description:
Constructs and returns a condition of type type using slot-initializations for the initial values of
the slots. The newly created condition is returned.

Examples:

(defvar *oops-count* 0)

(setq a (make-condition ’simple-error

:format-control "This is your ~:R error."

:format-arguments (list (incf *oops-count*))))

→ #<SIMPLE-ERROR 32245104>

(format t "~&~A~%" a)

⊲ This is your first error.

→ NIL

(error a)

⊲ Error: This is your first error.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return to Lisp Toplevel.

⊲ Debug>

Affected By:
The set of defined condition types .

See Also:
define-condition, Section 9.1 (Condition System Concepts)

restart System Class

Class Precedence List:
restart, t

Description:
An object of type restart represents a function that can be called to perform some form of
recovery action, usually a transfer of control to an outer point in the running program.

9–48 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

An implementation is free to implement a restart in whatever manner is most convenient; a
restart has only dynamic extent relative to the scope of the binding form which establishes it.

compute-restarts Function

Syntax:
compute-restarts &optional condition → restarts

Arguments and Values:
condition—a condition object , or nil.

restarts—a list of restarts .

Description:
compute-restarts uses the dynamic state of the program to compute a list of the restarts which
are currently active.

The resulting list is ordered so that the innermost (more-recently established) restarts are nearer
the head of the list .

When condition is non-nil , only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of conditions of which the given condition is not an
element . If condition is nil, all restarts are considered.

compute-restarts returns all applicable restarts , including anonymous ones, even if some of them
have the same name as others and would therefore not be found by find-restart when given a
symbol argument.

Implementations are permitted, but not required, to return distinct lists from repeated calls to
compute-restarts while in the same dynamic environment. The consequences are undefined if the
list returned by compute-restarts is every modified.

Examples:

;; One possible way in which an interactive debugger might present

;; restarts to the user.

(defun invoke-a-restart ()

(let ((restarts (compute-restarts)))

(do ((i 0 (+ i 1)) (r restarts (cdr r))) ((null r))

(format t "~&~D: ~A~%" i (car r)))

(let ((n nil) (k (length restarts)))

(loop (when (and (typep n ’integer) (>= n 0) (< n k))

Conditions 9–49

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(return t))

(format t "~&Option: ")

(setq n (read))

(fresh-line))

(invoke-restart-interactively (nth n restarts)))))

(restart-case (invoke-a-restart)

(one () 1)

(two () 2)

(nil () :report "Who knows?" ’anonymous)

(one () ’I)

(two () ’II))

⊲ 0: ONE

⊲ 1: TWO

⊲ 2: Who knows?

⊲ 3: ONE

⊲ 4: TWO

⊲ 5: Return to Lisp Toplevel.

⊲ Option: 4

→ II

;; Note that in addition to user-defined restart points, COMPUTE-RESTARTS

;; also returns information about any system-supplied restarts, such as

;; the "Return to Lisp Toplevel" restart offered above.

Affected By:
Existing restarts.

See Also:
find-restart, invoke-restart, restart-bind

find-restart Function

Syntax:
find-restart identifier &optional condition

restart

Arguments and Values:
identifier—a non-nil symbol , or a restart .

condition—a condition object , or nil.

9–50 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart—a restart or nil.

Description:
find-restart searches for a particular restart in the current dynamic environment .

When condition is non-nil , only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of conditions of which the given condition is not an
element . If condition is nil, all restarts are considered.

If identifier is a symbol , then the innermost (most recently established) applicable restart with
that name is returned. nil is returned if no such restart is found.

If identifier is a currently active restart, then it is returned. Otherwise, nil is returned.

Examples:

(restart-case

(let ((r (find-restart ’my-restart)))

(format t "~S is named ~S" r (restart-name r)))

(my-restart () nil))

⊲ #<RESTART 32307325> is named MY-RESTART

→ NIL

(find-restart ’my-restart)

→ NIL

Affected By:
Existing restarts.

restart-case, restart-bind, with-condition-restarts.

See Also:
compute-restarts

Notes:

(find-restart identifier)
≡ (find identifier (compute-restarts) :key :restart-name)

Although anonymous restarts have a name of nil, the consequences are unspecified if nil is given
as an identifier . Occasionally, programmers lament that nil is not permissible as an identifier
argument. In most such cases, compute-restarts can probably be used to simulate the desired
effect.

Conditions 9–51

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

invoke-restart

invoke-restart Function

Syntax:
invoke-restart restart &rest arguments → {result}*

Arguments and Values:
restart—a restart designator .

argument—an object .

results—the values returned by the function associated with restart, if that function returns.

Description:
Calls the function associated with restart, passing arguments to it. Restart must be valid in the
current dynamic environment .

Examples:

(defun add3 (x) (check-type x number) (+ x 3))

(foo ’seven)

⊲ Error: The value SEVEN was not of type NUMBER.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a different value to use.

⊲ 2: Return to Lisp Toplevel.

⊲ Debug> (invoke-restart ’store-value 7)

→ 10

Side Effects:
A non-local transfer of control might be done by the restart.

Affected By:
Existing restarts.

Exceptional Situations:
If restart is not valid, an error of type control-error is signaled.

See Also:
find-restart, restart-bind, restart-case, invoke-restart-interactively

Notes:
The most common use for invoke-restart is in a handler . It might be used explicitly, or implicitly
through invoke-restart-interactively or a restart function.

9–52 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Restart functions call invoke-restart, not vice versa. That is, invoke-restart provides primitive
functionality, and restart functions are non-essential “syntactic sugar.”

invoke-restart-interactively Function

Syntax:
invoke-restart-interactively restart → {result}*

Arguments and Values:
restart—a restart designator .

results—the values returned by the function associated with restart, if that function returns.

Description:
invoke-restart-interactively calls the function associated with restart, prompting for any neces-
sary arguments. If restart is a name, it must be valid in the current dynamic environment .

invoke-restart-interactively prompts for arguments by executing the code provided in the
:interactive keyword to restart-case or :interactive-function keyword to restart-bind.

If no such options have been supplied in the corresponding restart-bind or restart-case, then the
consequences are undefined if the restart takes required arguments. If the arguments are optional,
an argument list of nil is used.

Once the arguments have been determined, invoke-restart-interactively executes the following:

(apply #’invoke-restart restart arguments)

Examples:

(defun add3 (x) (check-type x number) (+ x 3))

(add3 ’seven)

⊲ Error: The value SEVEN was not of type NUMBER.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a different value to use.

⊲ 2: Return to Lisp Toplevel.

⊲ Debug> (invoke-restart-interactively ’store-value)

⊲ Type a form to evaluate and use: 7

→ 10

Side Effects:
If prompting for arguments is necesary, some typeout may occur (on query I/O).

A non-local transfer of control might be done by the restart.

Conditions 9–53

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Affected By:
query-io, active restarts

Exceptional Situations:
If restart is not valid, an error of type control-error is signaled.

See Also:
find-restart, invoke-restart, restart-case, restart-bind

Notes:
invoke-restart-interactively is used internally by the debugger and may also be useful in imple-
menting other portable, interactive debugging tools.

restart-bind Macro

Syntax:
restart-bind ({(name function {↓key-val-pair}*)}) {form}*

→ {result}*

key-val-pair ::=:interactive-function interactive-function |

:report-function report-function |

:test-function test-function

Arguments and Values:
name—a symbol ; not evaluated.

function—a form; evaluated.

forms—an implicit progn.

interactive-function—a form; evaluated.

report-function—a form; evaluated.

test-function—a form; evaluated.

results—the values returned by the forms .

Description:
restart-bind executes the body of forms in a dynamic environment where restarts with the given
names are in effect.

9–54 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart-bind

If a name is nil, it indicates an anonymous restart; if a name is a non-nil symbol , it indicates a
named restart.

The function, interactive-function, and report-function are unconditionally evaluated in the current
lexical and dynamic environment prior to evaluation of the body. Each of these forms must
evaluate to a function.

If invoke-restart is done on that restart, the function which resulted from evaluating func-
tion is called, in the dynamic environment of the invoke-restart, with the arguments given to
invoke-restart. The function may either perform a non-local transfer of control or may return
normally.

If the restart is invoked interactively from the debugger (using invoke-restart-interactively),
the arguments are defaulted by calling the function which resulted from evaluating interactive-
function. That function may optionally prompt interactively on query I/O , and should return a
list of arguments to be used by invoke-restart-interactively when invoking the restart.

If a restart is invoked interactively but no interactive-function is used, then an argument list of nil
is used. In that case, the function must be compatible with an empty argument list.

If the restart is presented interactively (e.g., by the debugger), the presentation is done by calling
the function which resulted from evaluating report-function. This function must be a function of
one argument, a stream. It is expected to print a description of the action that the restart takes
to that stream. This function is called any time the restart is printed while *print-escape* is nil.

In the case of interactive invocation, the result is dependent on the value of
:interactive-function as follows.

:interactive-function

Value is evaluated in the current lexical environment and should return a
function of no arguments which constructs a list of arguments to be used by
invoke-restart-interactively when invoking this restart. The function may prompt
interactively using query I/O if necessary.

:report-function

Value is evaluated in the current lexical environment and should return a function of
one argument, a stream, which prints on the stream a summary of the action that this
restart takes. This function is called whenever the restart is reported (printed while
print-escape is nil). If no :report-function option is provided, the manner in which
the restart is reported is implementation-dependent .

:test-function

Value is evaluated in the current lexical environment and should return a function of one
argument, a condition, which returns true if the restart is to be considered visible.

Conditions 9–55

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Affected By:
query-io.

See Also:
restart-case, with-simple-restart

Notes:
restart-bind is primarily intended to be used to implement restart-case and might be useful in
implementing other macros. Programmers who are uncertain about whether to use restart-case

or restart-bind should prefer restart-case for the cases where it is powerful enough, using
restart-bind only in cases where its full generality is really needed.

restart-case Macro

Syntax:
restart-case restartable-form {↓clause} → {result}*

clause::=(case-name lambda-list

[[:interactive interactive-expression | :report report-expression | :test test-expression]]

{declaration}* {form}*)

Arguments and Values:
restartable-form—a form.

case-name—a symbol or nil.

lambda-list—an ordinary lambda list .

interactive-expression—a symbol or a lambda expression.

report-expression—a string , a symbol , or a lambda expression.

test-expression—a symbol or a lambda expression.

declaration—a declare expression; not evaluated.

form—a form.

results—the values resulting from the evaluation of restartable-form, or the values returned by the
last form executed in a chosen clause, or nil.

9–56 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart-case

Description:
restart-case evaluates restartable-form in a dynamic environment where the clauses have special
meanings as points to which control may be transferred. If restartable-form finishes executing and
returns any values, all values returned are returned by restart-case and processing has completed.
While restartable-form is executing, any code may transfer control to one of the clauses (see
invoke-restart). If a transfer occurs, the forms in the body of that clause is evaluated and any
values returned by the last such form are returned by restart-case. In this case, the dynamic
state is unwound appropriately (so that the restarts established around the restartable-form are no
longer active) prior to execution of the clause.

If there are no forms in a selected clause, restart-case returns nil.

If case-name is a symbol , it names this restart.

It is possible to have more than one clause use the same case-name. In this case, the first
clause with that name is found by find-restart. The other clauses are accessible using
compute-restarts.

Each arglist is an ordinary lambda list to be bound during the execution of its corresponding
forms. These parameters are used by the restart-case clause to receive any necessary data from a
call to invoke-restart.

By default, invoke-restart-interactively passes no arguments and all arguments must be optional
in order to accomodate interactive restarting. However, the arguments need not be optional if
the :interactive keyword has been used to inform invoke-restart-interactively about how to
compute a proper argument list.

Keyword options have the following meaning.

:interactive

The value supplied by :interactive value must be a suitable argument to function.
(function value) is evaluated in the current lexical environment. It should return a func-
tion of no arguments which returns arguments to be used by invoke-restart-interactively

when it is invoked. invoke-restart-interactively is called in the dynamic environment
available prior to any restart attempt, and uses query I/O for user interaction.

If a restart is invoked interactively but no :interactive option was supplied, the argu-
ment list used in the invocation is the empty list.

:report

If the value supplied by :report value is a lambda expression or a symbol , it must be
acceptable to function. (function value) is evaluated in the current lexical environment.
It should return a function of one argument, a stream, which prints on the stream a
description of the restart. This function is called whenever the restart is printed while
print-escape is nil.

Conditions 9–57

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart-case

If value is a string , it is a shorthand for

(lambda (stream) (write-string value stream))

If a named restart is asked to report but no report information has been supplied, the
name of the restart is used in generating default report text.

When *print-escape* is nil, the printer uses the report information for a restart. For
example, a debugger might announce the action of typing a “continue” command by:

(format t "~&~S -- ~A~%" ’:continue some-restart)

which might then display as something like:

:CONTINUE -- Return to command level

The consequences are unspecified if an unnamed restart is specified but no :report option
is provided.

:test

The value supplied by :test value must be a suitable argument to function.
(function value) is evaluated in the current lexical environment. It should return a
function of one argument , the condition, that returns true if the restart is to be consid-
ered visible.

The default for this option is equivalent to (lambda (c) (declare (ignore c)) t).

If the restartable-form is a list whose car is any of the symbols signal, error, cerror, or warn

(or is a macro form which macroexpands into such a list), then with-condition-restarts is used
implicitly to associate the indicated restarts with the condition to be signaled.

Examples:

(restart-case

(handler-bind ((error #’(lambda (c)

(declare (ignore condition))

(invoke-restart ’my-restart 7))))

(error "Foo."))

(my-restart (&optional v) v))

→ 7

(define-condition food-error (error) ())

→ FOOD-ERROR

(define-condition bad-tasting-sundae (food-error)

((ice-cream :initarg :ice-cream :reader bad-tasting-sundae-ice-cream)

(sauce :initarg :sauce :reader bad-tasting-sundae-sauce)

(topping :initarg :topping :reader bad-tasting-sundae-topping))

(:report (lambda (condition stream)

9–58 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart-case

(format stream "Bad tasting sundae with ~S, ~S, and ~S"

(bad-tasting-sundae-ice-cream condition)

(bad-tasting-sundae-sauce condition)

(bad-tasting-sundae-topping condition)))))

→ BAD-TASTING-SUNDAE

(defun all-start-with-same-letter (symbol1 symbol2 symbol3)

(let ((first-letter (char (symbol-name symbol1) 0)))

(and (eql first-letter (char (symbol-name symbol2) 0))

(eql first-letter (char (symbol-name symbol3) 0)))))

→ ALL-START-WITH-SAME-LETTER

(defun read-new-value ()

(format t "Enter a new value: ")

(multiple-value-list (eval (read))))

→ READ-NEW-VALUE

Conditions 9–59

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

restart-case

(defun verify-or-fix-perfect-sundae (ice-cream sauce topping)

(do ()

((all-start-with-same-letter ice-cream sauce topping))

(restart-case

(error ’bad-tasting-sundae

:ice-cream ice-cream

:sauce sauce

:topping topping)

(use-new-ice-cream (new-ice-cream)

:report "Use a new ice cream."

:interactive read-new-value

(setq ice-cream new-ice-cream))

(use-new-sauce (new-sauce)

:report "Use a new sauce."

:interactive read-new-value

(setq sauce new-sauce))

(use-new-topping (new-topping)

:report "Use a new topping."

:interactive read-new-value

(setq topping new-topping))))

(values ice-cream sauce topping))

→ VERIFY-OR-FIX-PERFECT-SUNDAE

(verify-or-fix-perfect-sundae ’vanilla ’caramel ’cherry)

⊲ Error: Bad tasting sundae with VANILLA, CARAMEL, and CHERRY.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Use a new ice cream.

⊲ 2: Use a new sauce.

⊲ 3: Use a new topping.

⊲ 4: Return to Lisp Toplevel.

⊲ Debug> :continue 1

⊲ Use a new ice cream.

⊲ Enter a new ice cream: ’chocolate

→ CHOCOLATE, CARAMEL, CHERRY

See Also:
restart-bind, with-simple-restart.

Notes:

(restart-case expression
(name1 arglist1 ...options1... . body1)
(name2 arglist2 ...options2... . body2))

is essentially equivalent to

9–60 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(block #1=#:g0001

(let ((#2=#:g0002 nil))

(tagbody

(restart-bind ((name1 #’(lambda (&rest temp)

(setq #2# temp)

(go #3=#:g0003))

...slightly-transformed-options1...)
(name2 #’(lambda (&rest temp)

(setq #2# temp)

(go #4=#:g0004))

...slightly-transformed-options2...))
(return-from #1# expression))
#3# (return-from #1#

(apply #’(lambda arglist1 . body1) #2#))

#4# (return-from #1#

(apply #’(lambda arglist2 . body2) #2#)))))

Unnamed restarts are generally only useful interactively and an interactive option which has no
description is of little value. Implementations are encouraged to warn if an unnamed restart is
used and no report information is provided at compilation time. At runtime, this error might be
noticed when entering the debugger. Since signaling an error would probably cause recursive en-
try into the debugger (causing yet another recursive error, etc.) it is suggested that the debugger
print some indication of such problems when they occur but not actually signal errors.

(restart-case (signal fred)

(a ...)

(b ...))

≡
(restart-case

(with-condition-restarts fred

(list (find-restart ’a)

(find-restart ’b))

(signal fred))

(a ...)

(b ...))

restart-name Function

Syntax:
restart-name restart → name

Conditions 9–61

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Arguments and Values:
restart—a restart .

name—a symbol .

Description:
Returns the name of the restart, or nil if the restart is not named.

Examples:

(restart-case

(loop for restart in (compute-restarts)

collect (restart-name restart))

(case1 () :report "Return 1." 1)

(nil () :report "Return 2." 2)

(case3 () :report "Return 3." 3)

(case1 () :report "Return 4." 4))

→ (CASE1 NIL CASE3 CASE1 ABORT)

;; In the example above the restart named ABORT was not created

;; explicitly, but was implicitly supplied by the system.

See Also:
compute-restarts find-restart

with-condition-restarts Macro

Syntax:
with-condition-restarts condition-form restarts-form {form}*

→ {result}*

Arguments and Values:
condition-form—a form; evaluated to produce a condition.

condition—a condition object resulting from the evaluation of condition-form.

restart-form—a form; evaluated to produce a restart-list.

restart-list—a list of restart objects resulting from the evaluation of restart-form.

forms—an implicit progn; evaluated.

results—the values returned by forms.

9–62 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

Description:
First, the condition-form and restarts-form are evaluated in normal left-to-right order; the primary
values yielded by these evaluations are respectively called the condition and the restart-list.

Next, the forms are evaluated in a dynamic environment in which each restart in restart-list is
associated with the condition. See Section 9.1.4.2.4 (Associating a Restart with a Condition).

See Also:
restart-case

Notes:
Usually this macro is not used explicitly in code, since restart-case handles most of the common
cases in a way that is syntactically more concise.

with-simple-restart Macro

Syntax:
with-simple-restart (name format-control {format-argument}*) {form}*

→ {result}*

Arguments and Values:
name—a symbol .

format-control—a format control .

format-argument—an object (i.e., a format argument).

forms—an implicit progn.

results—in the normal situation, the values returned by the forms; in the exceptional situation
where the restart named name is invoked, two values—nil and t.

Description:
with-simple-restart establishes a restart.

If the restart designated by name is not invoked while executing forms, all values returned by the
last of forms are returned. If the restart designated by name is invoked, control is transferred to
with-simple-restart, which returns two values, nil and t.

If name is nil, an anonymous restart is established.

The format-control and format-arguments are used report the restart .

Conditions 9–63

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

with-simple-restart

Examples:

(defun read-eval-print-loop (level)

(with-simple-restart (abort "Exit command level ~D." level)

(loop

(with-simple-restart (abort "Return to command level ~D." level)

(let ((form (prog2 (fresh-line) (read) (fresh-line))))

(prin1 (eval form)))))))

→ READ-EVAL-PRINT-LOOP

(read-eval-print-loop 1)

(+ ’a 3)

⊲ Error: The argument, A, to the function + was of the wrong type.

⊲ The function expected a number.

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Specify a value to use this time.

⊲ 2: Return to command level 1.

⊲ 3: Exit command level 1.

⊲ 4: Return to Lisp Toplevel.

(defun compute-fixnum-power-of-2 (x)

(with-simple-restart (nil "Give up on computing 2∧~D." x)

(let ((result 1))

(dotimes (i x result)

(setq result (* 2 result))

(unless (fixnump result)

(error "Power of 2 is too large."))))))

COMPUTE-FIXNUM-POWER-OF-2

(defun compute-power-of-2 (x)

(or (compute-fixnum-power-of-2 x) ’something big))

COMPUTE-POWER-OF-2

(compute-power-of-2 10)

1024

(compute-power-of-2 10000)

⊲ Error: Power of 2 is too large.

⊲ To continue, type :CONTINUE followed by an option number.

⊲ 1: Give up on computing 2∧10000.

⊲ 2: Return to Lisp Toplevel

⊲ Debug> :continue 1

→ SOMETHING-BIG

See Also:
restart-case

Notes:
with-simple-restart is shorthand for one of the most common uses of restart-case.

9–64 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

with-simple-restart could be defined by:

(defmacro with-simple-restart ((restart-name format-control

&rest format-arguments)

&body forms)

‘(restart-case (progn ,@forms)

(,restart-name ()

:report (lambda (stream)

(format stream ,format-control ,@format-arguments))

(values nil t))))

Because the second return value is t in the exceptional case, it is common (but not required)
to arrange for the second return value in the normal case to be missing or nil so that the two
situations can be distinguished.

abort Restart

Data Arguments Required:
None.

Description:
The intent of the abort restart is to allow return to the innermost “command level.” Implemen-
tors are encouraged to make sure that there is always a restart named abort around any user
code so that user code can call abort at any time and expect something reasonable to happen;
exactly what the reasonable thing is may vary somewhat. Typically, in an interactive listener,
the invocation of abort returns to the Lisp reader phase of the Lisp read-eval-print loop, though
in some batch or multi-processing situations there may be situations in which having it kill the
running process is more appropriate.

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, abort (func-
tion)

Conditions 9–65

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

continue Restart

Data Arguments Required:
None.

Description:
The continue restart is generally part of protocols where there is a single “obvious” way to
continue, such as in break and cerror. Some user-defined protocols may also wish to incorporate
it for similar reasons. In general, however, it is more reliable to design a special purpose restart
with a name that more directly suits the particular application.

Examples:

(let ((x 3))

(handler-bind ((error #’(lambda (c)

(let ((r (find-restart ’continue c)))

(when r (invoke-restart r))))))

(cond ((not (floatp x))

(cerror "Try floating it." "~D is not a float." x)

(float x))

(t x)))) → 3.0

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, continue
(function), assert, cerror

muffle-warning Restart

Data Arguments Required:
None.

Description:
This restart is established by warn so that handlers of warning conditions have a way to tell
warn that a warning has already been dealt with and that no further action is warranted.

Examples:

(defvar *all-quiet* nil) → *ALL-QUIET*

(defvar *saved-warnings* ’()) → *SAVED-WARNINGS*

(defun quiet-warning-handler (c)

(when *all-quiet*

(let ((r (find-restart ’muffle-warning c)))

9–66 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(when r

(push c *saved-warnings*)

(invoke-restart r)))))

→ CUSTOM-WARNING-HANDLER

(defmacro with-quiet-warnings (&body forms)

‘(let ((*all-quiet* t)

(*saved-warnings* ’()))

(handler-bind ((warning #’quiet-warning-handler))

,@forms

saved-warnings)))

→ WITH-QUIET-WARNINGS

(setq saved

(with-quiet-warnings

(warn "Situation #1.")

(let ((*all-quiet* nil))

(warn "Situation #2."))

(warn "Situation #3.")))

⊲ Warning: Situation #2.

→ (#<SIMPLE-WARNING 42744421> #<SIMPLE-WARNING 42744365>)

(dolist (s saved) (format t "~&~A~%" s))

⊲ Situation #3.

⊲ Situation #1.

→ NIL

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart,
muffle-warning (function), warn

store-value Restart

Data Arguments Required:
a value to use instead (on an ongoing basis).

Description:
The store-value restart is generally used by handlers trying to recover from errors of types
such as cell-error or type-error, which may wish to supply a replacement datum to be stored
permanently.

Examples:

(defun type-error-auto-coerce (c)

(when (typep c ’type-error)

(let ((r (find-restart ’store-value c)))

Conditions 9–67

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

(handler-case (let ((v (coerce (type-error-datum c)

(type-error-expected-type c))))

(invoke-restart r v))

(error ()))))) → TYPE-ERROR-AUTO-COERCE

(let ((x 3))

(handler-bind ((type-error #’type-error-auto-coerce))

(check-type x float)

x)) → 3.0

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, store-value
(function), ccase, check-type, ctypecase, use-value (function and restart)

use-value Restart

Data Arguments Required:
a value to use instead (once).

Description:
The use-value restart is generally used by handlers trying to recover from errors of types such as
cell-error, where the handler may wish to supply a replacement datum for one-time use.

See Also:
Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), invoke-restart, use-value
(function), store-value (function and restart)

abort, continue,muffle-warning, store-value, use-
value Function

Syntax:
abort &optional condition →

continue &optional condition → nil

muffle-warning &optional condition →

store-value value &optional condition → nil

use-value value &optional condition → nil

9–68 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

abort, continue, muffle-warning, store-value, use-value

Arguments and Values:
value—an object .

condition—a condition object , or nil.

Description:
Transfers control to the most recently established applicable restart having the same name as
the function. That is, the function abort searches for an applicable abort restart , the function
continue searches for an applicable continue restart , and so on.

If no such restart exists, the functions continue, store-value, and use-value return nil, and the
functions abort and muffle-warning signal an error of type control-error.

When condition is non-nil , only those restarts are considered that are either explicitly associated
with that condition, or not associated with any condition; that is, the excluded restarts are those
that are associated with a non-empty set of conditions of which the given condition is not an
element . If condition is nil, all restarts are considered.

Examples:

;;; Example of the ABORT retart

(defmacro abort-on-error (&body forms)

‘(handler-bind ((error #’abort))

,@forms)) → ABORT-ON-ERROR

(abort-on-error (+ 3 5)) → 8

(abort-on-error (error "You lose."))

⊲ Returned to Lisp Top Level.

;;; Example of the CONTINUE restart

(defun real-sqrt (n)

(when (minusp n)

(setq n (- n))

(cerror "Return sqrt(~D) instead." "Tried to take sqrt(-~D)." n))

(sqrt n))

(real-sqrt 4) → 2

(real-sqrt -9)

⊲ Error: Tried to take sqrt(-9).

⊲ To continue, type :CONTINUE followed by an option number:

⊲ 1: Return sqrt(9) instead.

⊲ 2: Return to Lisp Toplevel.

⊲ Debug> (continue)

⊲ Return sqrt(9) instead.

→ 3

Conditions 9–69

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

abort, continue, muffle-warning, store-value, use-value

(handler-bind ((error #’(lambda (c) (continue))))

(real-sqrt -9)) → 3

;;; Example of the MUFFLE-WARNING restart

(defun count-down (x)

(do ((counter x (1- counter)))

((= counter 0) ’done)

(when (= counter 1)

(warn "Almost done"))

(format t "~&~D~%" counter)))

→ COUNT-DOWN

(count-down 3)

⊲ 3

⊲ 2

⊲ Warning: Almost done

⊲ 1

→ DONE

(defun ignore-warnings-while-counting (x)

(handler-bind ((warning #’ignore-warning))

(count-down x)))

→ IGNORE-WARNINGS-WHILE-COUNTING

(defun ignore-warning (condition)

(declare (ignore condition))

(muffle-warning))

→ IGNORE-WARNING

(ignore-warnings-while-counting 3)

⊲ 3

⊲ 2

⊲ 1

→ DONE

;;; Example of the STORE-VALUE and USE-VALUE restarts

(defun careful-symbol-value (symbol)

(check-type symbol symbol)

(restart-case (if (boundp symbol)

(return-from careful-symbol-value

(symbol-value symbol))

(error ’unbound-variable

:name symbol))

(use-value (value)

:report "Specify a value to use this time."

value)

9–70 Programming Language—Common Lisp

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

abort, continue, muffle-warning, store-value, use-value

(store-value (value)

:report "Specify a value to store and use in the future."

(setf (symbol-value symbol) value))))

(setq a 1234) → 1234

(careful-symbol-value ’a) → 1234

(makunbound ’a) → A

(careful-symbol-value ’a)

⊲ Error: A is not bound.

⊲ To continue, type :CONTINUE followed by an option number.

⊲ 1: Specify a value to use this time.

⊲ 2: Specify a value to store and use in the future.

⊲ 3: Return to Lisp Toplevel.

⊲ Debug> (use-value 12)

→ 12

(careful-symbol-value ’a)

⊲ Error: A is not bound.

⊲ To continue, type :CONTINUE followed by an option number.

⊲ 1: Specify a value to use this time.

⊲ 2: Specify a value to store and use in the future.

⊲ 3: Return to Lisp Toplevel.

⊲ Debug> (store-value 24)

→ 24

(careful-symbol-value ’a)

→ 24

;;; Example of the USE-VALUE restart

(defun add-symbols-with-default (default &rest symbols)

(handler-bind ((sys:unbound-symbol

#’(lambda (c)

(declare (ignore c))

(use-value default))))

(apply #’+ (mapcar #’careful-symbol-value symbols))))

→ ADD-SYMBOLS-WITH-DEFAULT

(setq x 1 y 2) → 2

(add-symbols-with-default 3 ’x ’y ’z) → 6

Side Effects:
A transfer of control may occur if an appropriate restart is available, or (in the case of the
function abort or the function muffle-warning) execution may be stopped.

Affected By:
Each of these functions can be affected by the presence of a restart having the same name.

Conditions 9–71

Version 15.17, X3J13/94-101.
Wed 11-May-1994 6:57pm EDT

abort, continue, muffle-warning, store-value, use-value

Exceptional Situations:
If an appropriate abort restart is not available for the function abort, or an appropriate
muffle-warning restart is not available for the function muffle-warning, an error of type
control-error is signaled.

See Also:
invoke-restart, Section 9.1.4.2 (Restarts), Section 9.1.4.2.2 (Interfaces to Restarts), assert, ccase,
cerror, check-type, ctypecase, use-value, warn

Notes:

(abort condition) ≡ (invoke-restart ’abort)

(muffle-warning) ≡ (invoke-restart ’muffle-warning)

(continue) ≡ (let ((r (find-restart ’continue))) (if r (invoke-restart r)))

(use-value x) ≡ (let ((r (find-restart ’use-value))) (if r (invoke-restart r x)))
(store-value x) ≡ (let ((r (find-restart ’store-value))) (if r (invoke-restart r x)))

No functions defined in this specification are required to provide a use-value restart .

9–72 Programming Language—Common Lisp

