
ZETA-C(TM) User’s Guide

November 23, 2008

Contents

1 Overview and examples 9

2 The ZETA-C Implementation 11
2.1 Packages .11
2.2 Data structures .12

2.2.1 Numbers .12
2.2.2 Pointers .13
2.2.3 Arrays, structures, and unions .14
2.2.4 Strings .16

2.3 Debugging hints .17
2.3.1 Syntax errors .17
2.3.2 Compilation errors .18
2.3.3 Runtime debugging .21

2.4 Program construction .22
2.5 C Listener .23
2.6 Function Type Checking .25

3 Editing C with Zmacs 29
3.1 Cursor movement .29
3.2 Indentation and misc. .29
3.3 Sectionization .31
3.4 Compilation .32

4 The ZETA-C Dialect 33
4.1 Variable numbers of arguments .33
4.2 Lisp objects in C programs .34
4.3 Inclusion of Lisp code .35
4.4 ZETA-C Identifiers .35
4.5 Static variables and functions .36
4.6 Dialect reference .37

4.6.1 1 Introduction to C .37
4.6.2 1.2 AN OVERVIEW OF C PROGRAMMING 37
4.6.3 2 Lexical Elements .37
4.6.4 2.1 THE SOURCE CHARACTER SET .37
4.6.5 2.1.1 Whitespace and Line Termination .37
4.6.6 2.1.2 Character Encodings .37
4.6.7 2.2 COMMENTS .37
4.6.8 2.4 OPERATORS AND SEPARATORS .38

3

Contents

4.6.9 2.5 IDENTIFIERS .38
4.6.10 2.6 RESERVED WORDS .38
4.6.11 2.7 CONSTANTS .38
4.6.12 2.7.1 Integer Constants .38
4.6.13 2.7.2 Floating-point Constants .38
4.6.14 2.7.3 Character Constants .38
4.6.15 2.7.4 String Constants .39
4.6.16 2.7.5 Escape Characters .39
4.6.17 3 The C Preprocessor .39
4.6.18 3.2 PREPROCESSOR LEXICAL CONVENTIONS39
4.6.19 3.3.2 Defining Macros with Parameters .39
4.6.20 3.3.3 Rescanning of Macro Expressions .39
4.6.21 3.3.4 Predefined Macros .39
4.6.22 3.3.5 Undefining and Redefining Macros40
4.6.23 3.3.6 Some Pitfalls to Avoid .40
4.6.24 3.5 CONDITIONAL COMPILATION . 40
4.6.25 3.5.5 Thedefined Operator . 40
4.6.26 3.6 EXPLICIT LINE NUMBERING . 40
4.6.27 4 Declarations .40
4.6.28 4.2 TERMINOLOGY . 40
4.6.29 4.2.1 Scope .41
4.6.30 4.2.4 Overloading of Names .41
4.6.31 4.2.8 Initial Values .41
4.6.32 4.2.9 External Names .41
4.6.33 4.3 STORAGE CLASS SPECIFIERS .41
4.6.34 4.6 INITIALIZERS . 41
4.6.35 4.6.8 Other Types .42
4.6.36 4.8 EXTERNAL NAMES . 42
4.6.37 5 Types .42
4.6.38 5.1 STORAGE UNITS .42
4.6.39 5.2 INTEGER TYPES .42
4.6.40 5.2.3 CHARACTER TYPE .42
4.6.41 5.4 POINTER TYPES .43
4.6.42 5.4.2 Some problems with pointers .43
4.6.43 5.6 ENUMERATION TYPES .43
4.6.44 5.6.1 Detailed Semantics .43
4.6.45 5.7 STRUCTURE TYPES .43
4.6.46 5.7.1 Operations on Structures .43
4.6.47 5.7.2 Components .43
4.6.48 5.7.4 Bit Fields .43
4.6.49 5.11 TYPEDEF NAMES .44
4.6.50 5.11.1 Redefining Typedef Names .44
4.6.51 6 Type Conversions .44
4.6.52 6.3 CONVERSIONS TO INTEGER TYPES44
4.6.53 6.3.2 From Floating-point Types .44
4.6.54 6.3.4 From Pointer Types .44
4.6.55 6.7 CONVERSIONS TO POINTER TYPES44

4

Contents

4.6.56 6.7.1 From Pointer Types .44
4.6.57 6.7.2 From Integer Types .45
4.6.58 6.11 THE ASSIGNMENT CONVERSIONS45
4.6.59 6.12 THE USUAL UNARY CONVERSIONS45
4.6.60 6.14 THE FUNCTION ARGUMENT CONVERSIONS45
4.6.61 7 Expressions .46
4.6.62 7.2 EXPRESSIONS AND PRECEDENCE46
4.6.63 7.2.3 Overflow and Other Arithmetic Exceptions46
4.6.64 7.5 BINARY OPERATOR EXPRESSIONS46
4.6.65 7.5.1 Multiplicative Operators .46
4.6.66 7.5.2 Additive Operators .46
4.6.67 7.5.3 Shift Operators .47
4.6.68 7.5.4 Inequality Operators .47
4.6.69 7.8 ASSIGNMENT EXPRESSIONS .47
4.6.70 7.8.2 Compound Assignment .47
4.6.71 7.11 ORDER OF EVALUATION . 47
4.6.72 8 Statements .47
4.6.73 8.4 COMPOUND STATEMENT .47
4.6.74 8.7 SWITCH STATEMENT; CASE AND DEFAULT LABELS 48
4.6.75 9 Functions .48
4.6.76 9.5 AGREEMENT OF FORMAL AND ACTUAL PARAMETERS 48
4.6.77 9.8 AGREEMENT OF ACTUAL AND DECLARED RETURN TYPE . . . 48

5 Library routines 49
5.1 File and stream I/O .49

5.1.1 Kernel level I/O .49
5.1.2 Stdio level I/O .51
5.1.3 Miscellaneous file operations .54
5.1.4 Formatted output .54

5.2 Formatted input .55
5.3 String manipulation .56
5.4 Arithmetic and Transcendental Functions .56
5.5 Memory allocation .59
5.6 Non-local exits .59
5.7 Program termination .60

This document has been placed in the public domain.

Manual edition 1.10 for ZETA-C Release 1.1 (version 15.0) running under TI Explorer Release 2.0

19

5

Contents

Introduction and obligatory hype

Lisp Machines – the Symbolics 3600(R) series, LMI LAMBDA(R), and TI Explorer(R) – provide the
best software development environments in the world, but to date they have not been very useful for
cross-development: it has been difficult to take a program created and debugged on a Lisp Machine
and transfer it to some other environment, as this usually requires translating the program from Lisp
to some other language. Conversely, programs written in other languages in other environments could
not be run on a Lisp Machine.

ZETA-C(TM) helps bridge this portability gap by bringing C – the popular systems language of
UNIX(R) – to the Lisp Machine. With ZETA-C, it is possible to develop programs in C and still
make use of the power of the Lisp Machine environment.

C, as traditionally implemented, isunsafe: it is possible for an erroneous procedure to damage data
structures to which it is not intended to have access, typically by storing through an invalid pointer
or storing into an array at an invalid index. Indeed, the greater part of debugging a C program often
consists of tracking down such errors. Also, errors like these are often especially hard to find, as it will
only be sometime later that the damaged data structure will cause the process to crash, and by the time
the crash finally comes, a lot of information may have been lost that would be useful in diagnosing
the error.

ZETA-C, on the other hand, issafe: the automatic array-bounds and pointer-validity checking which
are built into the Lisp Machine ensure that no procedure can damage a data sructure to which it
doesn’t explicitly have access. An attempt to store through an uninitialized pointer, or into an array at
an invalid index (whether by way of a pointer or an explicitarray[index] reference) will be trapped
immediately, giving the user the full power of the Lisp Machine’s sophisticated debugger. The user
can then examine the context in which the damage was about to be done, rather than the unrelated
context in which it would, in the traditional scenario, have been discovered. The time required to
diagnose the problem is thus reduced from hours or days to minutes.

Another time-saving feature of the Lisp Machine system is its facility for incremental compilation
and dynamic linking. Traditionally, when one makes a change to a single procedure, the entire file
containing the procedure must be recompiled, and the entire program (which may consist of several
files) relinked, before the change can be tested. For even medium-sized programs, this debugging
turnaround can easily run to 10 minutes. Under ZETA-C, all of the ”symbol tables” and intermediate
data structures (which a traditional system must recreate from scratch for every compilation and link-
ing) are maintained incrementally; so only the procedures changed need be recompiled, and there is
no link phase. The turnaround is thus a few tens ofseconds, independent of the size of the program.

ZETA-C programs live in the Lisp world, and can call Lisp functions and access some kinds of Lisp
data structures directly. Thus, it is possible to incrementally convert a program from Lisp to C or vice
versa. For instance, one might prototype a program in Lisp, then convert its modules one by one into
C, testing the whole system as each module is converted. Conversely, it is easy to interface existing C
programs to the Lisp world.

The price of the runtime array-bounds checking is, unavoidably, a certain performance penalty for
array- and pointer-intensive C code (and, of course, most C code is array- and pointer-intensive).
More subtly, algorithms are written very differently in C than in Lisp, and Lisp Machine architectures
are, obviously, optimized for the Lisp way of doing things. As a result, a 3600/3670/3640 runs a

6

Contents

typical C program about the speed of a VAX 11/750(R). So we do not expect all CPU-intensive C
programs to run acceptably under ZETA-C without some hand-tuning.

Compatibility of ZETA-C with other C implementations is very good. We have used as our reference
C: A Reference Manualby Samuel P. Harbison and Guy L. Steele Jr. (Prentice-Hall, 1984). Chapter
4 documents the differences between ZETA-C and that standard.

How to use this guide

This User’s Guide is organized into five chapters. The first provides an overview of ZETA-C and some
examples of its use. The second describes important details of the ZETA-C implementation and its
interface to the Lisp Machine environment. The third discusses the extensions that have been made
to Zmacs for editing C files. The fourth describes in detail the differences between ZETA-C and the
Harbison & Steele standard. (These first four are probably of immediate interest to the first-time user
or prospective purchaser.) The fifth is a reference manual for the library of I/O routines and ”system
calls”.

This guide assumes throughout that the reader has some familiarity with the Lisp Machine software
system and the Common Lisp language. It also assumes a working acquaintance with C.

7

Contents

8

1 Overview and examples

ZETA-C is a fully integratedimplementation of C within the Lisp Machine environment. Its design
philosophy has been, not to ”glue” a distinct C editing/compilation/execution system onto the side,
as it were, of the Lisp Machine software, but rather toextendthe existing Lisp programming system
to incorporate C. Thus, Lisp and C functions can freely call each other; Lisp can access all C data
structures directly (no new fundamental datatypes have been created), and C can access many Lisp
data structures; C code, like Lisp code, is edited with Zmacs, to which commands specific to C have
been added; debugging is done with the same facilities; in fact, ZETA-C compiles a C function by
translating it into Lisp and handing the result to the existing Lisp compiler.

To see how all this works in practice, let’s run through a simple example. (This example is designed for
you to follow along at your own console, but it will still be comprehensible if you don’t. Following
along, of course, assumes that ZETA-C has been installed at your site.) First, see if ZETA-C is
loaded into your world; if not or if you don’t know how to tell, type at a Lisp listener(make-system
’zeta-c :noconfirm). Second, get a Zmacs window, and edit a new file named ”hello.c” (in
your home directory). As the first line of the file, type

/* -*- Mode: C; Package: (hello C) -*- */

Issue the Zmacs commandmeta-X Reparse Attribute List; you will notice that the Zmacs
mode line now says(C), indicating that C mode is active, and the wholine at the bottom of the
screen now shows the current package asHELLO:. Next, enter the following C function.

main()

{

printf("\nHello, world!\n");

}

Now give the Zmacs commandcontrol-shift-C. You will see in the echo area, first ”Compiling
MAIN”, then ”-- compiled.” Now get to a C listener by typing[Suspend], and type ”main();”.
You will see

Hello, world!

Type[Resume] or [Abort] to return to Zmacs. Now let’s save this program as a file and compile it
to produce a.BIN file. Save the file withcontrol-X control-S, then select a Lisp listener (with
[Select] L) and type the form

(zeta-c:c-compile-file "directory hello.c")

wheredirectory is the name of your home directory. The value returned will be the pathname of the
.BIN file; type ”(load *)” to load it, and ”(hello:|main|)” to run the program. Note the vertical

9

1 Overview and examples

bars around the symbolmain. These are necessary to suppress the normal conversion of letters to
uppercase.1 ZETA-C, unlike Lisp, iscase-sensitive, and will not recognize ”MAIN” or ”Main” as a
version of ”main”. Instead these are three different symbols, and in our example, only the last one
has been defined. Be carefulnot to extend the upright bars around the package prefix, or Lisp will not
recognize it as such. If you wish to avoid using upright bars when calling C from Lisp, simply use
all-uppercase names in your C code.

Now let’s try a fancier example. Still in Zmacs, find the file ”zeta-c:source;turtle.c”. Give
the commandmeta-X Compile Buffer (you will see a message like ”Warning: the package
TURTLE failed the validation function; the standard value for it will not be changed.”;
ignore it). When the compilation is complete, again hit[Suspend], and type ”init();”. The mouse
cursor will change to an inverted-L shape, indicating that you are being asked to designate the corners
of a window. Make a small (2”) square window which does not overlap with the editor window (this
may not be possible, in which case after you make the small window you should use the Edit Screen
option on the system menu to reshape the editor window so it does not overlap the new window; in
this case type ”init();” again after you uncover the new window). You will see a small triangle (the
”turtle”) in the center of your window. Those of you who have ever played with the kids’ programming
language Logo will recognize the commands available:

fd(dist); Move the turtle forwarddistpixels, drawing a line.

bk(dist); Move the turtle backdistpixels, drawing a line.

rt(angle); Turn the turtle right byangledegrees.

lt(angle); Turn the turtle left byangledegrees.

pu(); (”Pen Up”) Raise the turtle’s ”pen”, so that it does not leave a line when it
moves.

pd(); (”Pen Down”) Lower the turtle’s ”pen”, so that itdoesleave a line when it
moves.

These primitives are sufficient for drawing many kinds of pictures, from simple to quite complex. You
can define procedures using the C listener, just by typing in the definition as if you were entering it
into a C source file. Try, for instance, defining a procedure that draws a square of specified size:

square(len) int len; { int i; for (i = 0; i < 4; ++i) { fd(len); rt(90); } }

Call it with various arguments. (You may notice that round-off error causes the squares to be slightly
distorted. Rewriting the arithmetic inturtle.c to prevent this is left as an exercise for the reader.)
Write another procedure that displays several squares of different sizes and/or at different orientations
or origins. Play! The C listener is a very important tool for interacting with your ZETA-C program,
and it is worthwhile to spend a few moments simply getting comfortable with it.

1 The Lisp reader’s uppercase conversion allows the strings ”foo”, ” Foo”, and ”fOo” (for example) all to be read as the
symbolFOO; so Lisp code can normally be written in upper, lower, or mixed case. C, on the other hand, requires that
such strings be read as distinct identifiers.

10

2 The ZETA-C Implementation

This chapter discusses details of the ZETA-C implementation and its interface to the Lisp Machine
environment, both in terms of the user side (how one goes about compiling and running C programs)
and the Lisp side (how one connects Lisp programs to C programs). Because of the open nature of
the Lisp Machine software system, these two aspects are often deeply intertwined.

2.1 Packages

It is important to understand how ZETA-C makes use of Lisppackages. (The following discussion
assumes an understanding of the package system; if you are not familiar with its use, you should read
the appropriate section of the Lisp Machine documentation). It is important that names (of variables,
functions, etc.) in a C program be kept distinct from those in the Lisp world as well as those in
other C programs. For instance, the ZETA-C user must be allowed to define a functioncar without
it conflicting with the Lisp function of that name. To accomplish this, first, ZETA-C itself defines
a packageC: which does notinherit from theGLOBAL: package; then, users define packages which
inherit fromC: in which to intern their programs (we will call these latter ”C program packages”).

The Standard Value system checks, whenever you enter a Lisp Listener (by entering the Debugger
because of an error, or by hitting[Suspend]), that the current package inherits fromGLOBAL:; if it
doesn’t (no C program package does) then it will choose some other package – oftenUSER: – to make
current. So on entering the debugger you will see a message like ”Binding PACKAGE to #<Package
USER 16600000> (old value was #<Package CPROG 20560347>).” So when you’re in the De-
bugger or a Break loop, you will have to type an explicit package prefix to access symbols in your C
program package.

Also, in ZMACS, whenever you select a buffer in C mode, you will see a message like ”Warning:
the package CPROG failed the validation function; the standard value for it will
not be changed.” These messages can be ignored.

Of course, what usually happens if one omits a needed package prefix is an undefined-function or
unbound-symbol error, which can easily be fixed either with one of the fancy Debugger options or by
simply hitting[Abort] and retyping the form.

See p. 22 to see how to create a C program package.

C identifiers may also contain package prefixes, delimited with the ”$” character (which is otherwise
unused in C). So, for instance, the C statement ”TV$BEEP();”, equivalent to the Lisp ”(tv:beep)”,
would beep the console beeper (and/or flash the screen).

11

2 The ZETA-C Implementation

2.2 Data structures

To interface C and Lisp code, or just to understand some of the performance issues inherent in ZETA-
C, it is very handy to know how ZETA-C implements C data structures in terms of those provided by
Lisp.

2.2.1 Numbers

ZETA-C does not make any distinction between typesint andlong, or betweenunsigned int and
unsigned long. These are all implemented with the numeric type most natural to the Lisp Machine,
namely arbitrary-precision integers. We do not restrict the widths of these types to, say, 32 bits,
because doing so would make ZETA-C object code decidedlyslower.

The treatment of unsigned arithmetic in ZETA-C was problematic. What should be the value, for
instance, of(unsigned)-1? Since the ”word length” of arbitrary-precision integers is effectively
infinite, there is no particular positive integer that it makes sense to use in this case. What we do
is this1: we use the negative fixnum-1 as a representation of the unsigned value∞-1, and so on.
The only operation that’s actually affected by this interpretation is that of comparison: we simply
arrange that any unsigned value implemented as a negative integer is treated asgreaterthan any value
implemented as a positive integer.

The typesshort (equivalent tosigned short) andunsigned short are truncated to 16 bits. This
truncation is inefficient on the Lisp Machine, and so for optimum performance we do not recommend
the use of the short types for variables or structure components; arrays of them work better (see
below). Similarly forchar (equivalent tounsigned char) andsigned char, which are truncated
to 8 bits. Thechar type is unsigned by default not only because of this efficiency difference, but
also because C requires that all characters in the host character set be represented by positive values
of char variables, and the Lisp Machine character set defines several control characters above 0200
octal.

Variables of all integer types are stored so that their actual values are equal to their ”apparent” values
(as seen from Lisp). This means that any value greater than 231-1 will require a bignum to represent
it.

The float type is implemented with single-precision floating-point numbers, which have a 24-bit
mantissa and an 8-bit exponent;double uses double-precision (53-bit mantissa, 11-bit exponent).
Double-precision arithmetic is rather less efficient than single-precision – not just because the com-
putation takes longer, but also because double-floats are consed in the heap rather than fitting in a
pointer, as single-floats do – so ZETA-C provides an option to suppress the automatic conversion of
floats todoubles before performing any arithmetic. Just put the line

#define ZETA_C_SUPPRESS_AUTO_FLOAT_TO_DOUBLE

at the beginning of your program.

1 I am indebted to John Rose of Thinking Machines for this solution.

12

2.2 Data structures

2.2.2 Pointers

The choice of representations for pointers is constrained on the one hand by the ways that pointers can
be used in C programs, and on the other by the design goal that ZETA-C be asafeimplementation.
For instance, on the one hand, it is necessary that pointer arithmetic be possible: that one be able to
create a pointer to an element of an array, and then add an integer to that to get a pointer to a different
element; on the other hand, if in doing this one creates a pointer to a non-existent element, an attempt
to assign or reference through that pointer must be trapped.

To satisfy these constraints, it is clearly insufficient that a pointer be, as in C, merely an address. The
system must keep track of the array-bounds information that goes with the address. We accomplish
this by representing a pointer as a pair<array, index>, where thearray is a Lisp array object repre-
senting a C array or structure (see the next section), and theindexspecifies an element thereof. How
the pointer is actually represented depends on where it is stored. Pointer variables are implemented
as pairs of Lisp variables, namedptr.array andptr.index, whereptr is the name of the C pointer
variable. Pointers as array or structure elements take up two consecutive elements of the Lisp array;
the first isarray and the second isindex. These implementation matters are of course entirely invisible
to C programs, provided it is not assumed that a pointer and anint are the same size.

When a pointer is passed to a function, it is passed as two consecutive arguments; just like a pointer
variable, a pointer parameter in a function definition turns into a pair of parameters, which appear
consecutively in the lambda-list. A pointer is returned from a function as two values, the array and
index. Again, this is completely invisible to C code, provided all functions that accept and return
pointers are correctly declared.

In order to provide for the creation of pointers by taking the address (unary&) of scalar variables (as
opposed to elements of aggregates), ZETA-C creates ”address arrays”. The address array of variable
var is kept in a variablevar.address. (Address arrays are always created for external and static
variables, but only if needed for automatic variables.) So, a pointer tovar is the pair<var.address,
0>.

An example should make all of this clear. The C function

gubbish(ipp)

int **ipp;

{

static int i;

int *ip;

ip = &i;

*ipp = ip;

frobozz(ip);

return ip;

}

would be implemented in Lisp something like this (much irrelevant detail, notably the initialization of
i andi.address, has been omitted):

(defun gubbish (ipp.array ipp.index)

(let ((ip.array nil) (ip.index 0))

(setq ip.array i.address)

13

2 The ZETA-C Implementation

(setq ip.index 0)

(setf (aref ipp.array ipp.index) ip.array)

(setf (aref ipp.array (1+ ipp.index)) ip.index)

(frobozz ip.array ip.index)

(values ip.array ip.index)))

Some obvious consequences of these decisions: to increment a pointer we increment its index part;
two pointers are equal iff their array parts areeq and their index parts are equal; the difference of two
pointers is the difference of their index parts (assuming they point into the same array; an error occurs
otherwise), scaled down if necessary by the size of the objects they point to.

Special cases: the null pointer (of any type) is represented as having array partnil and index part0.
Any attempt to dereference it will of course cause an error to be signalled, sincenil is not an array.
A pointer-to-function is the exception toall of this – it’s not a pair, it’s just a single value: the symbol
that names the function. (A null function pointer is the symbolzeta-c:null-function-pointer.)

2.2.3 Arrays, structures, and unions

C arrays are Lisp arrays. Since C and Lisp use the same bounds convention – an array of sizen
contains elements numbered 0 throughn-1, inclusive – no subscript translation is necessary.

The representation chosen for an array depends on the type of the elements to be stored in it. Arrays
of int, long, unsigned int, unsigned long, any kind of pointer, or of structures or unions are
implemented with Lisp array typeart-q. Arrays ofshort andunsigned short are implemented
asart-16b arrays; arrays ofchar andsigned char are implemented asart-8b arrays. There
is no extra cost associated with using these to hold unsigned values, since that is the interpretation
the microcode imposes, butsigned chars and (signed) shorts must be sign-extended after being
loaded from an array; this renders the use of the signed types slightly slower.

Lisp Machines are fundamentally word-addressed machines. However, in order to accomodate pro-
grams that take, for instance, a pointer toshort, cast it to a pointer tochar, store two characters
at successive locations through that pointer, and then expect both characters to have fit in a single
short – a nonportable but all too common practice – ZETA-C simulates byte-addressing by means of
displaced arrays. To continue this example, consider a pointer, of type ”pointer toshort”, which at
runtime points to elementi of an arraya16bof typeart-16b. Casting this pointer to achar-pointer
causes the creation (at runtime) of anart-8b arraya8b, whose length is twice that ofa16band whose
contents are displaced to overlay those ofa16b; the result of the cast is a pointer to element 2i of a8b.
If one stores characters through successive values of this pointer (i.e., to elements 2i, 2i+1, ... ofa8b)
and then looks at the result through the originalshort-pointer, the characters will be seen to have
been stored two-per-halfword starting at the low-order end of the halfword.

Types stored inart-q arrays can take part in this pointer casting also. However, there is a slight
complication, sinceart-q arrays can hold non-numeric objects, and it would not make sense to load
or store bytes or halfwords out of or into a Lisp object pointer. Fortunately, the 36xx microcode
takes care of this case very nicely. If you try, for instance, to load a byte out of a word that contains
the array part of a ZETA-C pointer, you will get an error to the effect thatThe AR-1 microcode
encountered an ARRAY-WORD that was not a fixnum. One way to do this is (you can try this
in a C listener):

14

2.2 Data structures

char *cp, *cparray[1] = { "Hello there" };

cp = (char *)cparray;

*cp;

Structures are represented asart-q arrays; the elements of the structure occupy successive elements
of the array. ZETA-C, like traditional C implementations, uses a ”flat” representation for nested
aggregates, such that the storage occupied by an inner aggregate is part of that occupied by the outer
one. So, for instance, the declaration

struct foo {

int foovals[3];

struct foo *nextfoo;

} fooarray[20];

allocates a singleart-q array of length 100 (remember, a pointer takes up two cells). Furthermore,
arrays ofshorts orchars within a struct will be implemented using the same displaced-array ma-
chinery that handles pointer casts; so the declaration

struct bar {

int a;

struct foo *foop;

char name[20];

} abar;

allocates anart-q of length 8: 1 fora, plus 2 forfoop, plus 5 forname. It also creates and caches
(see below) anart-8b of length 32, displaced onto theart-q, so thatname is accessible as elements
12 through 21 thereof.

Normally, ZETA-C uses an ”unpacked” representation for structures, in the sense that all scalar ele-
ments of numeric type are allocated an entire word each. (Arrays within structs are always packed, as
we have just discussed.) So, for instance, the declaration

struct zot {

unsigned short z1;

char z2, z3;

struct foo *foop;

} azot;

creates anart-q of length 5, not 3 as one might imagine (expectingz1, z2, andz3 all to fit in
the first cell). This is done for performance reasons: we don’t want waste a lot of time switching
representations to load structure elements. If for some reason it’s important to your application that
structs be ”packed” (so thatz1, z2, andz3 all wouldfit in the first cell and the total lengthwouldbe 3),
use the keywordpacked_struct in place ofstruct for declaring all structs that need to be packed.
(packed_structs can be nested insidestructs and conversely, with complete freedom, though we
can’t imagine why this would be useful.)

The implementation of unions is very much like that of structures. A union of aggregates is anart-q
array whose size is the size of the largest aggregate in the union, and each of whose elements can be
referenced as the corresponding element of any of the aggregates. For example, given the declaration

union point {

15

2 The ZETA-C Implementation

struct rect_pt {

float x, y;

} rp;

struct polar_pt {

float r, theta;

} pp;

} pnt;

pnt will be an array of length 2;pnt.rp.x andpnt.pp.r both refer to element 0 of this array;
pnt.rp.y andpnt.pp.theta both refer to element 1.

When ZETA-C allocates a Lisp array to represent a C aggregate, it sets it up with a named-structure-
symbol and other information in the array-leader so the Lisp printer will print it recognizably; e.g.,
the declarationchar buffer[256]; creates an array that will print as#{(char [256]) BUFFER}.
Slots are also allocated in the array-leader to cache the displaced-arrays created by pointer-casting.
Specifically, here is how ZETA-C uses each element of the array-leader:

Note that one of the last three slots will always contain the array itself, since it has to be in one of the
three representations.

2.2.4 Strings

String constants in C code are written, of course, according to the standard C conventions. However,
if you look at a string in the C listener, you will see that it doesn’t look quite the same when printed
out as it does in your code. The special\-sequences will have been converted to the appropriate single
characters, and aNUL character (which displays as a raised dot,·) will have been appended. So, for
instance:

What you write in your C code:
"Hello, world!\n"

What is printed:
"Hello, world

·"

Note that if you pass a Lisp string to a C function, you must be sure to have appended theNUL yourself.
(If you don’t, the C function will get an array-bounds error when it scans off the end of the string,
since this is the only way C code has of knowing where a string ends.) Conversely, for Lisp code to
make proper use of a C string, theNUL must be stripped and the character-pointer converted to a Lisp
string. The following functions exist for this purpose.

zeta-c:string-to-C str Function

Given a Lisp string, returns a C character pointer (as two values: array and index) that points to
the beginning of a copy of the string. Appends a NUL to the copy.

zeta-c:string-to-lisp str.array str.index&optionalcase Function

16

2.3 Debugging hints

Given a C character pointer<str.array, str.index>, returns a copy of its contents as a Lisp string.
case, if supplied, may be:upcase or :downcase, requesting a forced conversion to upper or
lower case respectively.

The Lisp Machine’s character set is unusual in that the first 128 characters (0 through 177 octal) are
all printing characters; the control characters are octal 200 through 237. See your Lisp manual for
more details. As long as you use the predefined escape sequences\r, \n, \b, \t, \f, and\v, this will
not make any difference to your programs, unless you are using the high-order bits of characters for
some special purpose. The sequences\r and\n both name the[Return] character, octal 215;\b is
[Overstrike], octal 208;\t is [Tab], octal 209; and\f and\v are both[Page], octal 214.

2.3 Debugging hints

This section contains explanations of the error messages issued by ZETA-C, along with some material
that will help you interpret them and find the problem efficiently.

2.3.1 Syntax errors

When the ZETA-C parser encounters a syntax error, it displays three lines of context with a marker at
the point where the error was detected, like this:

<< Error in reading >>

Error while parsing line 58 of ED-BUFFER: CTEST.C#> GYRO.ZETA-C; ASTARTE::

Expression syntax

Error happened somewhere before the point indicated by> "->HERE<-" in:

{

*junkp += c

} ->HERE<-

In this case, as you see, the error was a missing semicolon. Here are the error messages the parser can
emit whose interpretations may not be obvious:

Expression syntax Error

An error was found at the expression level. Look for a missing semicolon, unbalanced parenthe-
ses, or the like.

External definition syntax Error

An error was found in an external variable declaration or function definition. Look for a mistyped
type name, a missing semicolon or comma, or mismatched delimiters.

Statement syntax Error

An error was found at the statement level. Look for an incorrectly writtenif, for, while, etc.

17

2 The ZETA-C Implementation

When a syntax error occurs, the parser will attempt to recover and continue. In the case of something
simple, like a missing semicolon, this will usually work, but many errors will throw the parser off
completely. When this happens, there are likely to be more syntax errors; just fix the first error and
the rest will probably go away by themselves.

2.3.2 Compilation errors

When an error is encountered in semantic analysis or ”code generation”, a message is issued which
displays the offending structures in ZETA-C’s internal representations. So, clearly, in order to be able
to fully understand such a message, one should know how to interpret those representations.2 There
are two important representational systems: that used for the parsed input expressions, and that used
to describe the types of values.

Representation of expressions

Expressions (and statements) are represented quite straightforwardly as Lisp forms; for instance, the
C statement

a = b + 3*foo((c == 0) ? d : e) + f[g++];

is represented as the Lisp form

(= A (+ B (+ (* 3 (FOO (|?:| (== C 0) D E))) ([] F (X++ G)))))

From this example, several points should be visible immediately:

• Operators have names which are identical to, or at least strongly suggestive of, their C notations.

• Calls to user functions appear just as they do in Lisp.

• Variable names are converted to upper case (see p. 35).

A complete list of the ZETA-C primitives appears in Figure 2.1. These are all symbols in packageC:;
they name macros which invoke the ZETA-C analysis and translation apparatus. Some of the names
end in plus signs to avoid conflict with legal C identifiers (those which are alphabetic, but do not end
in ”+”, are ZETA-C reserved words).

The syntax of two of these primitive macros deserves examples. First, let’s look at function definition.
Here is a sample C function:

char *

foo(x, y)

int x, y;

{

int quux;

bar(x + y);

}

2 This is not a deficiency on ZETA-C’s part vis-a-vis other compilers, since the latter don’t have such detailed error
messages in the first place.

18

2.3 Debugging hints

Here is its ZETA-C internal representation:

(DEFUNC+ ((CHAR) (* (FCN+ FOO X Y))) (((INT) X Y)) (BLOCK+ (((INT) QUUX)) (BAR (+ X Y))))

And here are some sample declarations:

char foo(), *bar, *baz[47];

struct thing {

int who, *why;

struct thing *this, *that;

} thingarray[128];

And here are their internal representations:

(DECL+ (CHAR) (FCN+ FOO) (* BAR) (* ([] BAZ 47)))

(DECL+ ((STRUCT THING ((INT) WHO (* WHY)) (((STRUCT THING)) (* THIS) (* THAT)))) ([] THINGARRAY 128.))

Note some features of this representation:

• The name of the function is embedded inside a type declarator (see below).

• The second subform of thedefunc+ form is a list of parameter declarations.

• The third subform is the body, and is always ablock+ form.

• The first subform of ablock+ form is a list of local variable declarations.

Representation of types

ZETA-C represents types internally as list structure. Figure 2.3 shows the type description language.

Compilation error reference

Assignments to structures are not allowed. If you would like to permit them (for UNIX compatibility), setq zeta-c:*firstclass-structures* to T. Error

See p. 43.

Attempt to call exp of type type as a function Error

Chances are, either you have a variable with the same name as a function, or you wrote some
expression like(*ftab[ifunc])() incorrectly, or you declared something incorrectly.

Attempt to use expression exp, of type type, as a predicate Error

Arrays, structures, and unions may not be used as predicates in conditionals, as in,e.g., if
(frob) ... wherefrob is a structure.

BREAK not inside WHILE, FOR, DO, or SWITCH Error

19

2 The ZETA-C Implementation

A break statement may only appear lexically inside one of these constructs.

CASE not inside SWITCH Error

A case statement may only appear in the body of aswitch statement.

CONTINUE not inside WHILE, FOR, or DO Error

A continue statement may only appear lexically inside one of these constructs.

Element name not found in struct/union type type Error

You have attempted to reference a structure element which is not present in this structure. Re-
member that ZETA-C does not use a single namespace for structure elements (see p. 43).

Excess initializer values: vals Error

You have given a list of initializer values which is longer than the aggregate being initialized.

Expression exp of type type cannot be used as an lvalue Error

You have attempted to assign to, increment, or take the address of something which is not a
variable or array or structure element.

Illegal use of storage class sclassin context context Error

The storage class of a declaration does not make sense in the context; for instance,auto in an
external declaration.

Initializer expression exp is not of type type Error

The type of the initializer expression supplied does not match the type,type, of the variable being
initialized.

Initializer nested too deeply: init-exp Error

A brace-delimited list of initializer values was supplied where only a single, undelimited value
was expected.

Internal error: message Error

One of ZETA-C’s internal consistency checks has been violated. This represents a bug in
ZETA-C. If possible, please send a bug report with a full backtrace and a copy of the C code
that excited the bug. To get into the error handler in the error context, you may have to set
compiler:warn-on-errors to NIL and recompile.

20

2.3 Debugging hints

Mismatched consequent and alternate types to "?:": type1 and type2 Error

In a conditional expression, the types of the two expressions on either side of the colon must
match (one must be coercible into the other).

Parameter name appeared more than once in the parameter list list Error

The same name may not be used for two different parameters of a function.

Returning structures from functions is not allowed. Error

The treatment of structures as firstclass objects has been disabled. If you would like to enable
it – to allow structures to be assigned, passed as arguments, and returned from functions – set
zeta-c:*firstclass-structures* to T. (See p. 43).

The body of a switch statement must be a block, with no declarations Error

This is a ZETA-C restriction. (Blocksinsidethe body may have declarations.)

Type mismatch between function declaration and RETURN value: type1 declared, type2 returned Error

The value you are attempting to return is not of the same type as the declared type of the function.

Undeclared struct/union tag: tag Error

You have writtenstruct tagorunion tagwithout declaring or having declaredtag’s elements.

Variable name appeared in the parameter declarations, but is not one of the parameters list Error

You have declarednamein the parameter declarations at the head of a function, butnameis not
in the parameter list of the function.

Wrong argument type ... Error

You have supplied a value of incorrect or nonsensical type to one of the ZETA-C primitives; for
example, perhaps you attempted to add a structure or multiply a pointer.

2.3.3 Runtime debugging

[[This subsection will list some runtime errors whose meaning in the context of a C program may not
be clear, and suggest places to look to find the real problem.]]

[[It will also talk about the use of the Lisp debugger for debugging C, or the C object debugger if that
gets written.]]

21

2 The ZETA-C Implementation

2.4 Program construction

You have several options in building programs using ZETA-C. The simplest approach is to keep
files of C code, compile and load them by hand, and call the functions in them by hand from a
Lisp listener or from other Lisp or C programs. Or, if you want your C programs to be callable
from Lisp in roughly the same way that UNIX programs are callable from the shell, you can use
zeta-c:create-c-program to create the appropriate top level. You can use the Lispdefsystem
facility to partially automate the maintenance of these ”stand-alone” programs, or to integrate C code
into Lisp programs (ZETA-C itself takes this approach – its parser was built using the UNIXlex and
yaccutilities, which produce files of C code).

You should bear in mind, while preparing C programs for execution on the Lisp Machine, the way
ZETA-C depends on the Lisp package system (see p. 11). You will need to select a name for your C
program package, and add a file attribute list at the beginning of each file specifying this package and
C mode (see p. 29). If your program redefines any of the functions in the ZETA-C standard library
(see chapter 5), you should arrange to shadow their names in your C program package; one way to do
this is to include at the beginning of the main header (.h) file for the program lines like

#lisp

(gl:shadow ’(|putc| |getc|))

#endlisp

Alternatively, if you are usingdefsystem, you can add the shadowing declaration to the package
definition in the system definition file.

Here are the tools available for compiling files and building programs:

zeta-c:c-compile-file infile &optional outfile Function

C-compiles the specified file, producing a standard.BIN file. All declarations and #definitions
made by the file compiled or by any of the files it includes remain in effect after the compilation
is complete, and are accessible via the C listener.

zeta-c:create-c-program name Function

Sets up a function calledname– in packageGLOBAL: if possible, else in thename: package
– which is to be used as the top-level invocation function for a C program. The created func-
tion takes one required argument, which is the current directory in which the program is to be
run, followed by an &rest argument of strings, which are the ”command line arguments”. It ini-
tializes externals, bindsstdin etc. to the appropriate streams, packages up the ”command line
arguments” intoargc andargv in the standard UNIX way, and callsname:main. For instance,

(zeta-c:create-c-program ’cweed)

sets up a functioncweed which might then be called thus:

(cweed "oz:<x.gyro” ”-afd” ”oz: <x.gyro>foo.text”)>

22

2.5 C Listener

The following transformations are provided for users ofdefsystem. (See the section ondefsystem
in your Lisp Machine documentation.)

:c-compile input dependencies condition Defsystem transformation

Callscc-file to compile the indicated files, whose names must have canonical type:c. condi-
tion defaults tosi:file-newer-than-file-p.

:c-compile-load c-dep l-dep c-cond l-cond Defsystem transformation

Equivalent to(:fasload (:c-compile c-dep c-cond) l-dep l-cond).

2.5 C Listener

ZETA-C provides a ”C listener”, a counterpart to the Lisp Listener, for the manual entry and execution
of C expressions and declarations. You can get to an independent C listener (that runs in its own
process) by typing[Select] {, by selecting the C Listener item in the Programs column of the
System Menu, or by the Create, Split Screen, or Edit Screen menus in the Windows column of the
Lisp Listener. Or, you can get a C listener that runs in your Zmacs process by typing[Suspend] to a
Zmacs window whose buffer is in C mode (hit[Suspend] again to get a Lisp listener).

(The C listener is on[Select] { rather than[Select] C because the latter is standardly used for
the Converse program, and{ is a character suggestive of the C language. However, your local system
maintainer may have put Converse on some other key, makingC available for the C listener. Type
[Select] [Help] to be sure.)

When you create an independent C listener, the first thing it does is ask you what package you would
like to work in. If this package already exists, it must be a C program package (see p. 11); if it is
not, the C listener will request another package name. If the package does not exist, the C listener
offers to create it. Next, the C listener will ask you if you wish the external and static variables in
this package to be freshly initialized; you may want this if you are debugging a program and want
to start its execution over from the beginning. Then the listener will request a default directory for
file operations to take place in. Finally, the listener will issue a prompt (usuallyC:, but see below)
and await your typein. If at any time you wish to change the package or directory, or to reinitialize
externals and statics, typemeta-[Abort], and this series of questions will be repeated.

At this point – whether you’ve created an independent C listener or one within Zmacs – you may
type any of the following: a statement, a declaration, a function definition, or even a preprocessor
directive. A statement may consist merely of an expression followed by a semicolon; the expression
will be evaluated and its value printed. (Thus a C listener makes an excellent infix-notation desk
calculator!) Just as with a Lisp listener, parsing happens on the fly, and the statement, declaration, or
definition will be processed as soon as it is syntactically complete (as soon as you type the closing
semicolon or right brace); a preprocessor directive will require a[Return]. Also, the input editor is
fully available for editing input, along with the history feature for reentering previous inputs.

Here are some examples; user typein is inbold.

23

2 The ZETA-C Implementation

C package to work in? ctest

Create C package CTEST? (Y or N) Yes.

Initialize externals and statics in package CTEST? (Y or N) No.

Working directory for file I/O? astarte:gyro;

C: int foo; foo is declared

C: foo; foo’s value is requested

(int) 0 it’s zero, of type int

C: char *bar = "A string"; bar is declared and initialized

C: bar; bar’s value is requested

(char *) "->A string" the arrow indicates a pointer to that character of the string

C: for (foo=0; foo<5; ++foo) printf("%s\n", bar + foo);

A string a "for" loop with a function call

string does just what you’d expect

string

tring

ring

C: #include <stdio.h> we want to do some fancier I/O

C: viewfile (name) we type in a simple function

char *name; (actually, this is probably more complex

{ a function than you would actually use the

FILE *fd; C listener for, but it’s a good example)

int c;

if ((fd = fopen(name, "r")) == NULL) {

printf("Can’t open ’%s’.\n", name);

exit(0);

}

while ((c == getc(fd) != EOF) putchar(c);

fclose(fd);

} we type the closing brace, and the function gets compiled

C: viewfile("hello.c"); and we run it

/* -*- Mode: C; Package: (hello C) -*- */ printing the file we typed in long ago

main() {

printf("\nHello, world!\n");

}

C: #include "hello.c" we load that file

C: HELLO$main(); and call its function (note the package specification)

Hello, world!

C: etc....

Currently (Release 1.1), errors in execution of C expressions will still invoke the standard Lisp De-
bugger. Also, typing[Suspend] will give you a Lisp read-eval-print loop.

zeta-c:*c-listener-prompt* Variable

A string containing the prompt issued by a C listener when it is ready for an expression. The
default value is"C:".

24

2.6 Function Type Checking

2.6 Function Type Checking

Along with incremental compilation, ZETA-C provides an ”incrementallint ” facility that checks, at
load time, that the types of function arguments match the types of the corresponding formal param-
eters, even when the call and the definition are in different files. ”Load” time, in this case, is either
when the.BIN file is loaded, or, for code being compiled incrementally, essentially the same as com-
pile time. That is to say, when a function is compiled incrementally or loaded from a file, all known
calls to it are checked as well as all the calls it makes to other known functions. The warnings gener-
ated in case of mismatches are placed in the compiler warnings database, and can be reviewed via the
appropriate Zmacs commands (see the section on compiler warnings in your Zmacs manual).

Similar checking is performed for the type of the return value of a function.

25

2 The ZETA-C Implementation

+ Addition (one argument may be a pointer).

- Subtraction (one or both arguments may be pointers).

* With one argument, pointer dereferencing; with two, multiplication.

/ (//)3 Division.

% Remainder.

<< Shift left.

>> Shift right.

& Bitwise AND.

| (/|) Bitwise OR.

^ Bitwise XOR.

~ Bitwise NOT (one argument).

== Equality comparison.

!= Inequality comparison.

< Less-than comparison.

> Greater-than comparison.

<= Less-than-or-equal comparison.

>= Greater-than-or-equal comparison.

! Logical NOT.

&& Logical AND.

|| (/|/|) Logical OR.

= Assignment.

++x Preincrement.

x++ Postincrement.

--x Predecrement.

x-- Postdecrement.

+= Add and assign (first argument may be a pointer).

-= Subtract and assign (first argument may be a pointer).

*= Multiply and assign.

/= (//=) Divide and assign.

%= Take remainder and assign.

<<= Shift left and assign.

>>= Shift right and assign.

&= Bitwise AND and assign.

|= (/|=) Bitwise OR and assign.

^= Bitwise XOR and assign.

[] Array reference.

. (/.) Structure element reference.

-> Indirect structure element reference.

Figure 2.1:ZETA-C primitives — expressions.

26

2.6 Function Type Checking

progn+ The comma operator (which acts like the Lisp progn).

?: (?/:) The expression conditional.

if The statement conditional.

block+ Encloses statements in a block (see text).

goto Go to the specified label.

label+ The first argument is a label; the second is a statement.

while (while looptest body): iterate.

do (dobody looptest): iterate, doingbodyat least once.

for (for init looptest increment body): iterate with syntactic sugar.

break Skip to the end of this while, do, for, or switch.

continue Skip to the next iteration of this while, do, or for.

return Return from this function (argument, if any, is value to return).

switch (switchexp body): go to the case inbodymatchingexp.

case (casevalue): meaningful only in switch bodies.

cast+ (cast+type expression): cast the type ofexpressionto type.

sizeof The size of a type or instance.

#lisp (/#lisp) Encloses a group of Lisp forms introduced with #lisp (see p. 35).

defunc+ Function definition (see text for explanation).

decl+ External declaration.

fcn+ Indicates a function declaration.

list+ Encloses a list (written with braces in the source) of initializer values.

Figure 2.2:ZETA-C primitives — statements.

27

2 The ZETA-C Implementation

:char A character.

:signed-char A signed character.

:short A short (16-bit signed).

:unsigned-short An unsigned short.

:int Used for an int or long: an arbitrary-precision signed integer.

:unsigned Used for an unsigned int or unsigned long: an arbitrary-precision unsigned integer.

:float A single-precision floating point number.

:double A double-precision floating-point number.

:zero The constant 0.

:void The void type.

:lispval A lisp value (can be assigned or passed to and from functions, but nothing else).

:boolean The type of an expression evaluated for control, not value.

(:pointertype) A pointer to typetype.

(:pointertype:null) A null pointer to typetype.

(:arraytype length) An array oflengthelements, each of typetype. lengthcan be NIL, meaning the length
is not known.

(:functiontype) A function returning typetype.

(:struct .tag-or-elts) A structure. Iftag-or-eltsis a symbol, it’s a tag; if a list, it’s an alist associating element
names with types and accessing information.

(:union . tag-or-elts) A union; like :struct.

(:enum .tag-or-elts) An enumeration type; like :struct.

Figure 2.3:ZETA-C type descriptions.

28

3 Editing C with Zmacs

ZETA-C provides some Zmacs extensions to simplify the editing of C programs. These extensions
fall into several categories: cursor movement; indentation support and other convenience commands;
sectionization; and compilation. In order to activate these, you must specify C mode in the file attribute
list (”-*- line”) of each C source file; for instance

/* -*- Mode: C; Package: (name C) -*- */

Note that the attribute list must be enclosed in comment delimiters (/* ... */).

3.1 Cursor movement

control-meta-A Beginning of C Function or Declaration Key

Moves to the beginning of the current C function or declaration. If the cursor is already at the
beginning of one, moves to the beginning of the previous one.

control-meta-E End of C Function or Declaration Key

Moves to the end of the current C function or declaration. If the cursor is already at the end of
one, moves to the end of the next one.

control-meta-H Mark C Function or Declaration Key

Putspoint at the beginning, andmark at the end, of the current C function or declaration.
Given a positive or negative numeric argument, marks that many objects forward or backward,
respectively.

3.2 Indentation and misc.

C programs are indented in a variety of different styles. ZETA-C’s indentation support assumes that
braces are written only at the ends of lines; within this constraint, the following variations are sup-
ported:

zwei:*C-block-indentation* Variable

29

3 Editing C with Zmacs

The distance, in spaces, to indent nested C blocks. IfNIL (the default), the distance defaults to
the current tab width.

zwei:*C-indent-}-as-outside* Variable

If T (the default), a right brace on a line by itself is lined up with the statementsoutsidethe block
it closes:

foo();

}

bar();

If NIL, the brace is lined up with the statementsinsidethe block:

foo();

}

bar();

Tab Indent for C Key

Indents the current line in the current C style. With a numeric argument, indents that many lines
starting at the current line.

control-meta-Q Indent Region for C Key

Indents all lines in the region in the current C style.

control-; Indent for Comment Key

Moves to or creates a comment. Finds the start of any existing comments, or creates one at the end
of the current line. With a numeric argument, re-aligns existing comments for that many lines,
but does not create any.*COMMENT-COLUMN* is the minimum column (in pixels) for aligning
comments. (This is, in fact, the standard Indent for Comment function; C mode just sets up the
string variables specifying the comment-start and -end strings.)

meta-; End Comment Key

Closes the comment on this line (if any) and moves to the next line.

meta-P Up Comment Line Key

Moves to or creates a comment on the previous line; but first, if the current line contains a null
comment, it is deleted.

meta-N Down Comment Line Key

Moves to or creates a comment on the next line; but first, if the current line contains a null
comment, it is deleted.

30

3.3 Sectionization

control-meta-R Reposition Window for C Key

Tries to get all of the current C function or declaration on the screen. Repeated invocations
will scroll the comments immediately above the function or declaration on and off the screen,
alternately.

3.3 Sectionization

The term ”sectionization” is Zmacs jargon for finding the boundaries between the top-level decla-
rations and function definitions that appear in a source file. The sectionizer is also responsible for
finding a suitable name for each section; the name it chooses will be used bymeta-. and other
section-related commands. Since the indentation and layout conventions for C are considerably less
standardized than they are for Lisp, and since C syntax is more complex, it is a lot harder to tell where
sections begin and end in C programs. In order that the sectionizer should still work reasonably on
syntactically incorrect code, it does not even attempt to parse a file completely. Instead, it uses a
simple heuristic to guess where things must begin and end.1 Basically, whenever it sees a word – as
opposed to punctuation – starting in column 0, it considers that line to start a section. If the section
contains a function definition, the section takes its name from the function, just as you would expect;
if the section contains a declaration, the section takes its name from the first identifier declared (in the
case of a structure or union declaration, this is the structure or union tag if one is given, otherwise the
name of the first element).

To repeat: any word in column 0 is taken to start a section. It is worth mentioning some ramifications
of our use of this heuristic.

• Each line of a comment must start with whitespace or some non-alphabetic character.

• Each line of a function but the first must be indented, unless it starts with punctuation such as
”{”; we have seen C indentation styles wherein the declarations of functional parameters were
not indented, thus:

foo(a)

int a;

{ ...

The parameter declaration must be indented:

foo(a)

int a;

{ ...

• Likewise, statement labels must be indented.

• If an external variable declaration is to be recognized as starting a section, it must begin in
column 0. Alternatively, if you wish to group several consecutive declarations into one section
(so all of them can be recompiled if any has changed), indent all but the first.

1 The Lisp sectionizer, as you may know, takes the same approach – it just looks for left parentheses in column 0. The
heuristic for C is more complex but in the same spirit.

31

3 Editing C with Zmacs

• Preprocessor directives never start sections. Furthermore, each section extends to the beginning
of the next section, so preprocessor directives are considered to belong with thepreceding
declaration.

EXCEPTION: we specifically provide for the type of a function being defined to go on a line by itself,
thus:

struct env *

parent(e)

struct env *e;

{ ...

If you are uncertain about exactly how some code was sectionized, you can dometa-X List Definitions
to see if any of the sections are spurious or missing. If you are wondering why anyone would care,
read on to the next section!

3.4 Compilation

ZETA-C provides commands for compilation of single sections (see above), specified regions, or
entire buffers.

hyper-control-C (or control-shift-C) Compile Region Key

If there is a region, it is C-compiled; otherwise, the current section (function definition or external
declaration) is C-compiled.

hyper-meta-C (or meta-shift-C) Compile Buffer Changed Definitions Key

C-compiles any sections in the current buffer that have been edited since they were last compiled.
With a numeric argument, asks whether to compile each changed section.

meta-X Compile Buffer Extended Command

C-compiles the entire current buffer. With a numeric argument, compiles the rest of the buffer
(from point to the end).

ZETA-C provides an ”incrementallint ” facility to keep track of function argument and return value
types and verify consistency across files. Incremental compilation is one way to invoke this facility.
See p. 25 for more information.

32

4 The ZETA-C Dialect

Our goal has been and continues to be to make ZETA-C highly compatible with standard C im-
plementations, most notably the Berkeley 4.2bsd and Bell UNIX(R) System V compilers, as well
as the specification given inC: A Reference Manualby Samuel P. Harbison and Guy L. Steele Jr.
(Prentice-Hall, 1984). (We also plan to meet the ANSI C standard, as soon as that standard is re-
leased to the public.) This chapter documents in detail remaining incompatibilities, known bugs, and
implementation-defined behavior. We start with a couple of sections describing extensions ZETA-C
makes to standard C.

4.1 Variable numbers of arguments

In traditional C implementations, there is no checking at either compile or run time that the number
of arguments passed to a function is the same as the number of parameters the function declares. In
fact, most existing C programs are written assuming that it is possible for functions to take a variable
number of arguments; either the last one or more arguments will simply be omitted from a call, or
functions (notablyprintf) will accept what amounts to a variable-length list of arguments.

The Lisp Machine, on the other hand, provides run-time checking (and compile-time checking too,
for calls to known functions) of the number of arguments passed to a function, and requires explicit
declarations (&optional and&rest keywords in Lisp) when the function is to take a variable number
of arguments. ZETA-C likewise requires explicit declarations of optional and ”rest” arguments, by
means of the storage class specifiersoptarg andrestarg (applicable only to parameters).optarg
indicates that the argument (actual parameter) may be omitted; all subsequent arguments may also be
omitted, even if the corresponding parameters were not specifically declaredoptargs. restarg, on
the other hand, indicates that an arbitrary number of arguments may be passed corresponding to this
parameter; it is ignored except on the last parameter in the list. For example:

foo(a, b, c)

int a;

optarg int b;

char *c;

{

[... some stuff ...]
}

/* These calls to foo will all work */

foo(1);

foo(2, 476);

33

4 The ZETA-C Dialect

foo(3, 476, "Hello");

/* These will get a wrong-number-of-arguments error */

foo();

foo(44, 55, "Hello", "Goodbye");

send_multiple(dest, messages)

frob *dest;

restarg char *messages;

{

/* We send each message to the destination */

/* The end of the argument list is indicated by NULL */

for (i = 0; (&messages)[i]; ++i)

send(dest, (&messages)[i]);

}

/* An example call to send_multiple */

send_multiple(turtle, "Forward 4", "Right 45",

"Forward 96", NULL);

The technique shown insend_multiple for accessing each of the supplied arguments is not strictly
portable, since it assumes that successive arguments are stored at successively higher addresses, but
all the compilers we are familiar with work this way, and this trick has become quite common in C.
Note that it is not the parameter itself, but rather itsaddress, that is the base of the array of arguments.
Note also that you must provide your own convention for determining the end of the argument list:
under ZETA-C, an array-bounds error will be signalled if you attempt to access a nonexistent element
of the rest-argument array, but under traditional compilers, you will just get garbage.

RESTRICTION : do notmodify any of the rest-arguments if these arguments are structures. ZETA-C
does not make copies of these arguments, as the semantics of C requires. (C is defined to be call-by-
value, and ZETA-C conforms to this definition in all but this particular case, where its behavior is
call-by-reference.)

To compile your program with a traditional compiler, include the lines

#define optarg

#define restarg

(other changes may also be necessary, as there is no completely portable way to write functions that
accept variable numbers of arguments).

4.2 Lisp objects in C programs

ZETA-C provides a type,lispval, which is intended for variables holding miscellaneous Lisp ob-
jects (e.g., lists, flavor instances). The operations defined onlispvals are: assign, pass as function
argument, return as function value, compare for equality (the comparison is done witheql), or test as
conditional predicate withif, ?:, !, &&, or || (for this purpose,nil is treated asfalseand non-nil
astrue, just as in Lisp).

34

4.3 Inclusion of Lisp code

4.3 Inclusion of Lisp code

ZETA-C supports two forms of inclusion of Lisp code. One permits entry of a Lisp form as an
expressionin C, the other includes one or more Lisp forms as Cstatements.The expression form
(useful primarily in the C listener, but also available in C source files) is@form. For instance, the
demo program supplied with ZETA-C,zeta-c:source;turtle.c, contains a line like:

window = @tv:(make-window ’window :edges-from :mouse);

Note that after the closing right parenthesis of the Lisp form is encountered, the syntax reverts to C,
so that a semicolon is required to complete the statement. An expression entered with ‘@’ has type
lispval (see above), but can of course be cast to any type. If it is cast to a pointer type, the expression
is expected to return two values, which will become the array part and index part, respectively, of the
pointer (see the section on Pointers, page 13).

Much as some C compilers provide the#asm construct for literal inclusion of assembler code, ZETA-C
provides for the inclusion of Lisp forms as C statements via#lisp ... #endlisp. The lines between
these directives are read as Lisp forms and included in the source, as handed to the Lisp compiler,
without further processing. If this construct is used inside a function definition, all arguments, locals,
and statics of the function can be referenced by name (see the section on Pointers, page 13, on the
naming of pointer variables). Arestarg parameter will be bound to an array of the arguments. Note
that the Lisp forms will be read in the same package as the C code; if you want to access another
package, use an explicit prefix. Also note that the vertical bar convention must be used to reference
variables whose names contain lowercase letters (see the next section).

Comments between#lisp and#endlisp must be introduced with semicolons!

Here is an example:

print_num (n)

int n;

{

/* For no good reason, we use FORMAT instead

* of PRINTF to print the number. */

#lisp

(gl:format gl:t "The number is: ~D" |n|) ; Note "gl:"s

#endlisp

}

4.4 ZETA-C Identifiers

Unlike Lisp, C distinguishes upper and lower case in identifiers. So C variable and function names
are not automatically converted to upper case. This means that, when referencing a C variable or
function from Lisp, one must use Lisp’s vertical bar notation if the name contains lowercase let-
ters; for instance:|main|, or, if the reference is from another package, ”hello:|main|” (not
”|hello:main|”). Conversely, when referencing Lisp functions from C, one must write in upper-
case,e.g., ”TV$BEEP”.

35

4 The ZETA-C Dialect

ZETA-C uses the ‘$’ character (otherwise unused in C) for two purposes. One is to delimit package
prefixes, just as ‘:’ does in Lisp. So, for instance, the C statement ”TV$BEEP();”, equivalent to the
Lisp ”(tv:beep)”, would beep the console beeper (and/or flash the screen). The other use of ‘$’ is to
build internal names (called static alternate names) of variables and functions declaredstatic (see
the next section). Here’s how ZETA-C distinguishes these two uses: if what appears before the first
‘$’ in a name is a known package name, then it is taken to be a package prefix; otherwise, it is simply
considered to be part of the name. Package prefixes need not be written in upper case, though we
recommend this as a convention.

ZETA-C, like the Lisp in which it is implemented, supports arbitrarily long identifiers (well, to be
honest, the parser, being written in C, imposes a 4096 character limit), and all characters are signifi-
cant.

4.5 Static variables and functions

One of the uses of the ‘$’ character (see the previous section) is to build internal names (called static
alternate names) of variables and functions declaredstatic. This works in one of two ways:

• If a variable or function is declaredstatic at top level within a file –i.e., the declaration does
not appear within a function definition – then its static alternate name is the name part of the
file’s pathname, followed by a ‘$’, followed by the name of the variable or function as written.
For instance, if a file ”foo.c” contains a declaration ”static int bar;”, the alternate name
for ”bar” would be ”foo$bar”.

• If a variable is declaredstatic within a function definition, then the static alternate name is the
name of the function, ‘$’, the name of the variable, ‘$’, a decimal number. The decimal number
is used to distinguish multiple static variables of the same name in the same function; it is almost
always ”1”. So, the static alternate name of a variable declared ”static int quux;” within
a function ”zot”, assuming there’s only one such variable ”quux”, would be ”zot$quux$1”.

These two uses can compose, so if there’s a variable declared ”static int quux;” inside a function
declared ”static int zot() ...” in a file ”foo.c”, its static alternate name would be ”foozotquux$1”.

A static variable or function can be referenced by its short name in the file or function in which it is
declared,after it has been declared static. This means that, in the case of file statics, the variable or
function must be declared static textuallybeforeany reference to it appears. (This is an incompatibility
with standard C). However, in the case of a function, this does not mean that the entire function
definitionneed appear near the beginning of the file; only that adeclarationof it as static be near the
beginning. So, for instance, one can say ”static int zot();” near the beginning of the file, refer
to zot throughout, and at the end define it: ”static int zot() { ...”.

A static variable or function can be referenced by its alternate name from anywhere; specifically, from
the C listener. This is true even for static variables within functions (which was the purpose of all this,
by the way: to make these variables accessible from the C listener).

36

4.6 Dialect reference

4.6 Dialect reference

This section is written specifically as a companion toC: A Reference Manualby Samuel P. Harbison
and Guy L. Steele Jr. (Prentice-Hall, 1984) (abbreviated below ”C:ARM”). For every section in
that manual from which ZETA-C differs, or where the behavior of C is specified as implementation-
defined, we have included a correspondingly-numbered section here. We assume the reader has copy
of C:ARMto refer to.

4.6.1 1 Introduction to C

4.6.2 1.2 AN OVERVIEW OF C PROGRAMMING

See the Overview and Examples chapter on p. 9 of this manual.

4.6.3 2 Lexical Elements

4.6.4 2.1 THE SOURCE CHARACTER SET

ZETA-C uses the characters ‘$’ and ‘@’; ‘ $’ as the package prefix or static context delimiter, and ‘@’
to introduce a Lisp form (see the previous sections for descriptions of both of these).

4.6.5 2.1.1 Whitespace and Line Termination

There is no line length limit in ZETA-C.

4.6.6 2.1.2 Character Encodings

The Lisp Machine’s character set is unusual in that the first 128 characters (0 through 177 octal) are
all printing characters; the control characters are octal 200 through 237. See your Lisp manual for
more details. As long as you use the predefined escape sequences\r, \n, \b, \t, \f, and\v, this will
not make any difference to your programs, unless you are using the high-order bits of characters for
some special purpose. The sequences\r and\n both name the[Return] character, octal 215;\b is
[Overstrike], octal 208;\t is [Tab], octal 209; and\f and\v are both[Page], octal 214.

4.6.7 2.2 COMMENTS

Comments are normally treated as not nestable. However, if you put in the file attribute list (”-*- line”)
of a C source file the attribute ”Comments-nest: T”, then within that file (or any files it includes),
comments will be treated as nestable.

37

4 The ZETA-C Dialect

4.6.8 2.4 OPERATORS AND SEPARATORS

Compound assignment operators must be written as single tokens in ZETA-C;e.g., ”+=”, not ”+ =”.

4.6.9 2.5 IDENTIFIERS

ZETA-C places a 4096 character limit (i.e., effectively infinite) on identifier names; all characters are
significant. ‘$’ is used as the package prefix delimiter (like ‘:’ in Lisp); see page 35 above.

4.6.10 2.6 RESERVED WORDS

ZETA-C defines the additional reserved wordsoptarg andrestarg for declaring variable-length
function argument lists (see p. 33);signed for declaring signed character variables (see p. 12);
lispval for declaring variables to contain arbitrary Lisp objects (see p. 34); andpacked_struct
for declaring structures to be implemented with a ”packed” representation (see p. 14).

4.6.11 2.7 CONSTANTS

4.6.12 2.7.1 Integer Constants

ZETA-C recognizes both the suffix ’l’ or ’ L’, indicating along constant, and the suffix ’u’ or ’ U’,
indicating anunsigned constant; these may be used together. Since ZETA-C supports arbitrary-
precision integers, the value written will be the value used (no ”surprises” are possible like the ones
listed in this section ofC:ARM).

4.6.13 2.7.2 Floating-point Constants

Unless specially marked, a floating-point constant has typedouble. The suffix ’f’ or ’ F’ indicates
that the constant is to be of typefloat. The suffix ’l’ or ’ L’ is ignored (the typelong double is the
same asdouble).

4.6.14 2.7.3 Character Constants

Character constants have typechar, rather thanint as specified in this section ofC:ARM. (Since
char is an unsigned type, there is only one situation in which this will make a difference. Consider
the comparison(’A’ -1)>. One might expect this comparison to yieldfalse, but sincechar is
unsigned, it will instead yieldtrue, as in the example on p. 90 ofC:ARM. Note that(c -1)> where
c is achar variable will also yieldtrue, so by treating characterconstantsaschar rather thanint,
ZETA-C brings their behavior into line with that ofchar variables.)

Multicharacter constants are accepted, and treated as they are by the 4.2bsd compiler for the VAX:
the rightmost character in the constant goes in the low-order byte of the word (so achar * pointer

38

4.6 Dialect reference

to this word would see itfirst; this is ”backwards” with respect to the way strings are stored). 2-
character constants have typeunsigned short; 3- and 4-character constants have typeunsigned;
longer constants have typeunsigned long (but note that their use iscompletelynonportable).

4.6.15 2.7.4 String Constants

Identically written string constants within a single function will be represented by the same block of
storage. (This optimization is performed by the Lisp compiler, and so we cannot disable it.)

4.6.16 2.7.5 Escape Characters

Hexadecimal escape codes are also supported, in the form\xdd, whered is a hexadecimal digit (0-9,
a-f, A-F).

4.6.17 3 The C Preprocessor

4.6.18 3.2 PREPROCESSOR LEXICAL CONVENTIONS

The # must be the first character on the line; there may be any amount of whitespace between the #
and the preprocessor command. It is not an error if non-whitespace appears on a line after a command
that takes no arguments; such text is ignored.

4.6.19 3.3.2 Defining Macros with Parameters

In the invocationof a macro with parameters, ZETA-C will allow one space between the name of
the macro and the left parenthesis that begins the argument list, but will issue a portability warning
whenever such a space is encountered.

ZETA-C does not recognize formal parameter names within string and character constants.

4.6.20 3.3.3 Rescanning of Macro Expressions

Recursion in macro expansions is not detected, and causes ZETA-C to enter an infinite loop, which
can be stopped by typingcontrol-[Abort]. (But the example on the bottom of p.35 doesn’t loop! It
gets a syntax error as soon as two copies of the argument have been generated. This happens because
rescanning is interleaved with parsing.)

4.6.21 3.3.4 Predefined Macros

ZETA-C’s version ofstdio.h contains the line

#define ZETA_C

39

4 The ZETA-C Dialect

4.6.22 3.3.5 Undefining and Redefining Macros

Macros may be redefined freely; the old definition is simply discarded. No warning is issued. ZETA-C
does not keep a stack of definitions;#undef will ensure that no definition remains.

4.6.23 3.3.6 Some Pitfalls to Avoid

Macro expansions are actually rescanned as character sequences, but since all sequences of whitespace
and/or comments turn into single spaces, this does not generally make any difference. The exception
is that the null comment/**/ is explicitly recognized as a ”token concatenation” operator. Some
examples (cf. p. 39 ofC:ARM):

#define INC ++

#define TAB internal_table

#define INCTAB table_of_increments

#define CONC(x,y) x/**/y

#define CONC2(x,y) x /**/ y

#define DONTCONC(x,y) x/* */y

CONC(INC,TAB) =>INCTAB =>table_of_increments

CONC2(INC,TAB) =>INCTAB =>table_of_increments

DONTCONC(INC,TAB) =>INC TAB =>++ internal_table

Note that the null comment functions as a concatenation operator regardless of whether there is whites-
pace around it in the macro definition, but if there are any characters in the comment at all, it will not
cause concatenation.

Macro text is checked for balanced single and double quotes when it is first encountered, so the
example on the top of p. 40 of Harbison & Steele will cause an error.

4.6.24 3.5 CONDITIONAL COMPILATION

4.6.25 3.5.5 The defined Operator

Thedefined operator is not yet implemented.

4.6.26 3.6 EXPLICIT LINE NUMBERING

#line directives are ignored. ‘#’ on a line by itself is ignored. The use of ‘#’ as a synonym for
‘#line’ is not supported.

4.6.27 4 Declarations

4.6.28 4.2 TERMINOLOGY

40

4.6 Dialect reference

4.6.29 4.2.1 Scope

The scope of a statement label is the innermost enclosing block that contains declarations of automatic
variables, rather than the entire function as the standard specifies. The Lisp compiler enforces this
very reasonable restriction (jumping into a block that contains automatic variables is likely to cause
unpredictable results anyway).

4.6.30 4.2.4 Overloading of Names

Labels are not in the same name space as variables; but see section 4.2.1 above. ZETA-C provides
a separate component namespace for each structure and union type (the ”modern” interpretation).
Structure and union tags are in the same name space, but enumeration tags are in a separate one.

4.6.31 4.2.8 Initial Values

Like the UNIX compilers, ZETA-C initializes objects of static extent to zeros. New code should,
however, not depend on this. Since blocks with automatic variables cannot be entered abnormally in
ZETA-C (see section 4.2.1 above), there is no danger that the variables will not be properly initialized.

4.6.32 4.2.9 External Names

ZETA-C will issue an ”Undeclared variable” error for this example.

4.6.33 4.3 STORAGE CLASS SPECIFIERS

ZETA-C defines the additional keywordsoptarg and restarg, which behave syntactically like
storage-class specifiers and which apply only to parameter declarations. (See page 33.)

4.6.34 4.6 INITIALIZERS

Many C compilers (including the UNIX Portable C Compiler, PCC) make some attempt to ”do what
you mean” when given an initializer that does not quite conform to the rules. ZETA-C, on the other
hand, imposes a stricter interpretation. For instance

char magic_header[] = { "\037\235" };

is acceptable to PCC, but not to ZETA-C, which insists on either

char magic_header[] = {’\037’, ’\235’, ’\0’};

or
char magic_header[] = "\037\235";

As Guy Steele himself says (personal communication):

41

4 The ZETA-C Dialect

It is a very curious thing that a construct can be ILLEGAL and nevertheless highly
portable! That comes from many implementations being based on the same widely-
distributed but incorrect source code.

The code that processes braces in PCC is rather peculiar andad hoc. It accepts what K&R
specifies, but also accepts many other cases of missing or extraneous braces in a rather id-
iosyncratic pattern. In my opinion this particular use of braces is logically extraneous and
should be avoided for maximum portability. The braces ought to be interpreted as being
a list of items to be used to fill in the arraymagic_header, which ought to be of length
1 because that is the length of the brace-list. That would be the correct interpretation of

char *magic_header[] = { "\037\235" };

However, without the ”*” one gets the situation of trying to initialize achar to a pointer
value, and PCC goes to some trouble to figure out what you really might have meant.

ZETA-C allows any expression to be used in an initializer, even for variables of static extent.

4.6.35 4.6.8 Other Types

Objects of typelispval are also initializable. Of course, an initializer expression for such an object
must be either a variable of typelispval, a Lisp expression introduced with the@ operator (page 35),
or any expression explicitly cast to typelispval.

4.6.36 4.8 EXTERNAL NAMES

The approach ZETA-C takes to the resolution of external names is the ”omitted-extern” solution
described here.

4.6.37 5 Types

4.6.38 5.1 STORAGE UNITS

See the discussion in the section on Data Structures that begins on page 12.

4.6.39 5.2 INTEGER TYPES

int andunsigned are all potentially infinite precision (bignums). See the discussion on Numbers on
page 12.

4.6.40 5.2.3 CHARACTER TYPE

The typechar is unsigned. The typesigned char is available if requested explicitly; signed chars
are slower, however (see page 12). Note that some of the characters in the LispM’s character set are

42

4.6 Dialect reference

between 128 and 255 decimal, so they require 8 bits to represent, and will appear negative if assigned
to asigned char variable.

4.6.41 5.4 POINTER TYPES

4.6.42 5.4.2 Some problems with pointers

See section 6.7.1 below, concerning alignment behavior.

4.6.43 5.6 ENUMERATION TYPES

Enumeration tags are actually in a separate overloading class from structure and union tags.

4.6.44 5.6.1 Detailed Semantics

ZETA-C uses the integer model for enumerations (seeC:ARM, p. 103). That is, all enumeration types
are treated as synonyms for the typeint; enumeration constants and variables may be mixed freely
with integers in expressions.

4.6.45 5.7 STRUCTURE TYPES

4.6.46 5.7.1 Operations on Structures

Treating structures (and unions) as firstclass objects – assigning them, passing them as parameters,
and returning them as values – are all supported under ZETA-C. However, since some compilers do
not support these operations, we have provided an option to ”turn them off”, causing ZETA-C to signal
an error if one of these things is attempted. Just put the line

#define ZETA_C_NO_FIRSTCLASS_STRUCTURES

at the beginning of your program. Firstclass structures are supported by most of the UNIX compilers,
but by fewer of the non-UNIX compilers, so for maximum portability they should not be used.

4.6.47 5.7.2 Components

ZETA-C

follows the ”modern” rule described here, that each structure type defines a separate namespace for
its components. That is, component names may be reused freely in different structure types (though
of course they must be unique within a single structure type).

4.6.48 5.7.4 Bit Fields

Bit fields are allocated from right to left. They may be signed or unsigned.

43

4 The ZETA-C Dialect

4.6.49 5.11 TYPEDEF NAMES

4.6.50 5.11.1 Redefining Typedef Names

ZETA-C does not correctly handle the example given in this section. (This is pretty questionable
programming practice, anyway.)

4.6.51 6 Type Conversions

4.6.52 6.3 CONVERSIONS TO INTEGER TYPES

Traditional architectures provide different instructions for operating on different kinds of numbers; it
is up to the compiler to keep track of what kind of number is involved in any particular operation,
and to generate type conversion instructions as necessary. Lisp Machines, on the other hand, support
generic arithmetic instructions, and do type conversion automatically at runtime. This can cause
unexpected behavior in one case: if a variable is declaredint, say, but is given a floating-point value
by way of an escape to Lisp (see page 35), computations performed using that value will yield floating-
point results. These may be stored in otherint variables, and so forth, propagating floating-point-ness
throughout large parts of the program’s data structures. So be careful at the interface between Lisp
and C that numeric values match their declared types. (As long as one stays entirely within C, the
compiler will warn about mismatches.)

4.6.53 6.3.2 From Floating-point Types

When floating-point numbers are converted to integers, negative numbers are truncated downward
(away from 0).

4.6.54 6.3.4 From Pointer Types

See section 6.7.2 below.

4.6.55 6.7 CONVERSIONS TO POINTER TYPES

4.6.56 6.7.1 From Pointer Types

A ZETA-C pointer will be in one of three different representations, called ”scales”. Recall (page 13)
that a pointer is a pair of an array and an index. The index will be that used byaref to access the
element the pointer points to; where this is in memory depends, of course, on whether the array is of
typeart-q, art-16b, or art-8b. So, when a pointer is cast to a pointer type that uses a different
array representation, the index has to be ”rescaled”; for instance, conversion from a pointer toshort
to a pointer toint requires dividing the index by 2. The effect is that when a pointer of a smaller
scale is converted to a larger scale, it is automatically aligned for the larger scale; in the example just
given, the information aboutwhichhalfword in the word theshort-pointer pointed to is lost.

44

4.6 Dialect reference

4.6.57 6.7.2 From Integer Types

Conversions between integers and pointers have the following complicated behavior, which does a
pretty good job of simulating conventional implementations in certain important cases:

• When an integer is converted to a pointer, a runtime check is made:

– If the integer-typed object actually is an integer, the resulting pointer has arrayNIL and
index whatever the integer was.

– If the integer-typed object actually contains a Lisp cons (see below), the array part of the
resulting pointer is thecar of that cons, and the index part is itscdr.

• Similarly, when a pointer is converted to an integer:

– If the array part of the pointer isNIL, the resulting integer is just the index part of the
pointer.

– Otherwise, the result iscons of the array part and the index part. A cons, of course, is not
an integer, so an attempt to do arithmetic on it will cause a wrong-argument-type error.
This is how the second case mentioned above can arise.

The result of this scheme is 1) casting0 to a pointer always gives the null pointer; 2) casting a null
pointer to an integer always gives0; 3) one can cast an integer to a pointer and back without loss of
information, though the pointer thus created cannot be dereferenced; and 4) one can cast a pointer
to an integer and back without loss of information, though this causes consing at runtime and the
”integer” cannot be used for arithmetic. Note, incidentally, that assignment of an integer to a pointer
or conversely will generate a compile-time warning that a cast is being performed.

4.6.58 6.11 THE ASSIGNMENT CONVERSIONS

If the left and right side types of an assignment expression are not one of the combinations specified
here, ZETA-C will issue a warning message to the effect that a cast is being attempted. If the cast is
legal, compilation proceeds; otherwise (say, if an attempt is made to assign astruct to anint), an
error is issued.

4.6.59 6.12 THE USUAL UNARY CONVERSIONS

An optional compilation mode is provided to suppress the implicit conversion offloats todoubles
(see p. 12). Just put the line

#define ZETA_C_SUPPRESS_AUTO_FLOAT_TO_DOUBLE

at the beginning of your program.

4.6.60 6.14 THE FUNCTION ARGUMENT CONVERSIONS

The ZETA-C math library routines will accept arguments of type eitherfloat or double, and will
return results of the corresponding type.

45

4 The ZETA-C Dialect

ZETA-C’s representation of the null pointer is not the same as that of the number 0 (see page 13).
Therefore, when a constant null pointer is to be passed as an argument to a function, the number 0
must be explicitly cast to the appropriate type; for instance,

foo(bar, (char *)0, quux)

If the cast is omitted, ZETA-C’s function-argument type checker will issue a warning.

It is traditional (and good style) to defineNULL to the null pointer expression in the preprocessor, and
use it everywhere instead of the constant 0:

#define NULL ((char *) 0)

...foo(bar, NULL, quux)

It is less traditional, and even better style, to have several different null pointers, one for each pointer
type in one’s program:

#define CNULL ((char *) 0)

#define FNULL ((struct foo *) 0)

... etc. ...

4.6.61 7 Expressions

4.6.62 7.2 EXPRESSIONS AND PRECEDENCE

4.6.63 7.2.3 Overflow and Other Arithmetic Exceptions

Because of the infinite-precision integer (”bignum”) facility of the Lisp Machine, integer addition or
multiplication cannot overflow. Division by zero and floating-point overflow will cause a Lisp error to
be signalled (see your Lisp manual for details); by default, this will invoke the Debugger. Concerning
floating-point underflow, see the description of the Lisp variablezunderflow in your Lisp manual.

4.6.64 7.5 BINARY OPERATOR EXPRESSIONS

4.6.65 7.5.1 Multiplicative Operators

Lisp Machine integer division truncates toward zero, rather than toward negative infinity; so, for
example:

5 / 3 => 1

-5 / 3 => -1

5 % 3 => 2

-5 % 3 => -2

4.6.66 7.5.2 Additive Operators

When two pointers are being subtracted, ZETA-C checks atruntime that they point into the same
array, and signals an error if not (the message is ”Can’t subtract pointers into different

46

4.6 Dialect reference

arrays, array1 and array2”).

4.6.67 7.5.3 Shift Operators

Right shifts of a signed value shift in copies of the sign bit at the left. What may seem surprising is
that the same is true of right shifts of full-lengthunsignedvalues; but recall that these are effectively
infinitely long, and so even if 0-bits were being shifted in at the ”left”, they would never become
visible (see p. 12). Right shifts of (unsigned) chars and ofunsigned shorts, on the other hand,
shift 0-bits in at the left, as the language specifies and one would expect.

4.6.68 7.5.4 Inequality Operators

Note that comparison of pointers into different top-level aggregates (see the discussion of pointers
and aggregates starting on p. 13) cannot yield consistent results on the Lisp Machine, since Lisp’s
garbage collector can change the order of arrays in memory at runtime. We deal with this as follows.
By default, the array parts of pointers are ignored in comparisons. (We have encountered C code that
in fact compares pointers to different arrays, but doesn’t care what the result of the comparison is in
that case.) However, ZETA-C provides an option to cause comparison of pointers into different arrays
to signal an error at runtime. If you wish such errors signalled, put the line

#define ZETA_C_COMPARE_POINTERS_CAREFULLY

at the beginning of your program.

4.6.69 7.8 ASSIGNMENT EXPRESSIONS

4.6.70 7.8.2 Compound Assignment

ZETA-C requires compound assignment operators to be written as single syntactic tokens; for exam-
ple, ”&=” rather than ”& =”.

4.6.71 7.11 ORDER OF EVALUATION

ZETA-C, like Lisp, evaluates the arguments of a function call in left-to-right order; but don’t count
on this, since most C compilers evaluate function arguments right-to-left! ZETA-C does not currently
rearrange expressions in any of the ways described in this section ofC:ARM, but we do not guarantee
that it will not do so in the future.

4.6.72 8 Statements

4.6.73 8.4 COMPOUND STATEMENT

As mentioned in section 4.2.1 above, ZETA-C does not support jumping to a labeled statement within
a compound statement when the compound statement has declarations ofauto orregister variables.

47

4 The ZETA-C Dialect

This very reasonable restriction is enforced by the Lisp compiler.

4.6.74 8.7 SWITCH STATEMENT; CASE AND DEFAULT LABELS

ZETA-C requires that the body of aswitch statement be a compound statement, with no declarations.
Furthermore,case or default labels may not appear in any compound statement inside theswitch
body if that compound statement declaresauto or register variables.

4.6.75 9 Functions

4.6.76 9.5 AGREEMENT OF FORMAL AND ACTUAL PARAMETERS

ZETA-C checks the types of actual parameters (”arguments”) against the types of the corresponding
formal parameters at both compile time and load time, issuing warnings if they do not match. Since
the check is done at load time, mismatches will be noticed even when the caller and callee are in
different source files. Also, while normally ZETA-C conflates all the integral types –ints, longs,
unsigneds, etc., may be mixed freely in arithmetic and assignment expressions – these types are all
considered distinct for the purpose of parameter type checking (except that theshort andchar types
are automatically widened toint or unsigned, as appropriate). This is because most C compilers
cannot do type-checking in this case, and (depending on the details of the C implementation) the
different types cannot be counted on to be the same length. If a traditional implementation passes
function arguments on the stack, and sayint andlong are different sizes, and anint is passed
where along is expected, the arguments will not be aligned as the callee expects, causing erroneous
behavior. So, to help the user prevent such errors, ZETA-C here provides some of the functionality of
the UNIX lint utility.

4.6.77 9.8 AGREEMENT OF ACTUAL AND DECLARED RETURN TYPE

A return statement with no expression causes the Lisp object(:|No value returned from|
function) to be returned, wherefunction is the name of the function. Any attempt to do arithmetic,
pointer operations,etc.on such an object will of course signal an error, whereupon it will be obvious
thatfunctionwas expected to return a value but didn’t.

If the type of the expression in anreturn statement is not convertible by assignment to the declared
return type of the function, ZETA-C will issue a warning message to the effect that a casting conver-
sion is being attempted. If that fails, an error is issued.

48

5 Library routines

This chapter lists the I/O routines and ”system calls” provided by ZETA-C. We have attempted to
provide a library complete enough and compatible enough that most ”user-level” UNIX programs
will run with few or no changes. We have not, however, supported multiprocessing, pipes, raw device
I/O, or some of the more arcane operations UNIX provides on file descriptors. Also, note that most
versions of Lisp Machine software do not support bidirectional file streams.

All of these functions are interned in packageC:.

5.1 File and stream I/O

UNIX provides two levels of file handling routines. One consists of system calls, with which one
communicates in terms of ”file descriptors”, which are (as it happens) magic numbers whose meaning
is known only to the kernel; the system calls have names likeopen, close, read, write. The
other is a collection of library routines, known as the ”standard I/O package”, which talk in terms of
”streams”, which are pointers to structures of typeFILE (defined instdio.h); most of these routines’
names begin with ”f”:fopen, fclose, fread (but noteputc, getc). Consult a UNIX manual for
the details; we just wish to point out here that ZETA-C makes a distinction between file descriptors
and streams, and will give you an error if you call a routine with the wrong kind of thing. (The
implementation difference is just that a stream is a cons of a file descriptor andNIL.)

Note that a file name is anything acceptable tofs:parse-pathname.

5.1.1 Kernel level I/O

int open name mode Function

Opens the filenamefor reading (ifmodeis 0), writing (if modeis 1), or both (ifmodeis 2).
Returns a file descriptor, or -1 on error.

int creat name mode Function

Creates a file namedname. modeis ignored. Returns a file descriptor, or -1 on error.

close fd Function

Closes the file on file descriptorfd.

49

5 Library routines

int read fd buffer nbytes Function

Reads up tonbytesbytes from file descriptorfd, putting the result inbuffer. Returns the number
of bytes read, which will be less thannbytesif end-of-file was encountered; or -1 on error.

int write fd buffer nbytes Function

Writesnbytesbytes to file descriptorfd from buffer. Returns the number of bytes written, or -1
on error.

long lseek fd offset whence Function

Sets the read/write pointer of file descriptorfd to offset, if whenceis 0; or to the current location
plus offset, if whenceis 1; or to the end of the file plusoffset, if whenceis 2. If the resulting
position is before the beginning of the file, does nothing and returns -1; else returns the new
value of the pointer.

long tell fd Function

Returns the current value of the read/write pointer for file descriptorfd.

int isatty fd Function

Returnstrue (nonzero) iff file descriptorfd isassociated with the user’s console.

UNIX normally provides input line buffering with simple editing on streams to the user’s console.
ZETA-C defines the flavorzeta-c:unix-terminal-io-stream to provide the same functionality
(seezeta-c:source;zcio.lisp if you’re curious about the details). While many of the various
modes, line speeds, etc. that Unix provides its terminal streams are meaningless on the Lisp Machine’s
direct-connect terminal, ZETA-C does implement the following:

CBREAK mode When active, turns off line editing, so that each character is returned when
typed.Off by default.

ECHO mode When active, causes each character to be echoed as typed.Onby default.

The following functions are available to set and read these modes:

int gtty fd sgttyb Function

Gets the CBREAK and ECHO modes of the terminal stream associated withfd, and sets bits
in sgttyb.sg_flags appropriately (seezeta-c:include;sgtty.h). Note that these are the
only modes read. A Lisp error is signalled iffd is not associated with a terminal stream. Returns
0.

int stty fd sgttyb&optionaldont flush Function

50

5.1 File and stream I/O

Sets the CBREAK and ECHO modes of the terminal stream associated withfd according to bits
in sgttyb.sg_flags (seesgtty.h). CBREAK mode is substituted for RAW mode. Note that
these are the only modes set. First clears all input from the stream and waits for pending output
to complete, unlessdont flushis true (nonzero). A Lisp error is signalled iffd is not associated
with a terminal stream. Returns 0.

void ioctl fd opcode thing Function

Does one of several things depending onopcode. The operations available are:

TIOCGETP Equivalent togtty(fd, thing).

TIOCSETP Equivalent tostty(fd, thing).

TIOCSETN Equivalent tostty(fd, thing, 1) (doesn’t flush the stream before set-
ting modes).

FIONREAD In this case,thing is expected to be a pointer toint. *thing is set to 1
if there are characters available to be read fromfd, otherwise 0.

A Lisp error is signalled iffd is not associated with a terminal stream. Returns 0.

void ttytimeout fd timeout Function

Waits up totimeout/60 seconds for input to be available on the terminal stream associated with
fd. That is, it returns when input is available or when the time runs out, whichever happens first.
If a character is available, it can be read withgetc or possiblygetchar.

5.1.2 Stdio level I/O

To use any of these functions, add the line

#include <stdio.h>

at the beginning of any relevant files. Among other things, this file defines the following variables:

FILE *stdin Variable

The stream which is bound to the standard input (literally, to the valueof the Lisp variable
standard-input at the point the program was invoked.)

FILE *stdout Variable

The stream which is bound to the standard output (literally, to the valueof the Lisp variable
standard-output at the point the program was invoked.)

FILE *stderr Variable

51

5 Library routines

The stream which is bound to the standard error output (literally, to thevalue of the Lisp variable
error-output at the point the program was invoked.)

The standard I/O package provides the following functions:

FILE *fopen name mode Function

Opens the filenameforreading (ifmodeis ”r”), creates it for writing (ifmodeis ”w”), or opens
it for appending (ifmodeis ”a”). Returns a stdiostream, or NULL on error.

fclose stream Function

Closes the streamstream.

fflush stream Function

Causes any buffered data for the outputstreamstreamto be written out. The stream remains open.

int feof stream Function

Returnstrue (nonzero) iff the inputstreamstreamis at end-of-file.

int getc stream Function

Reads and returns the next character fromstream; or, if end-of-file is encountered, returnsEOF
(which is an integer value not equal to any character; be sure to assign the result ofgetc to an
int, notchar, variable).

int getchar Function

Equivalent togetc(stdin).

int fgetc stream Function

A synonym ofgetc (see above).

ungetc c stream Function

Un-gets the previously read characterc from stream, so that it will be returned by the next call to
getc. Only one character may be ungotten at a time, and it must be the same as the last character
read.

int getw stream Function

Reads the next two bytes fromstream, assembles them into a word, and returns the result. Does
not assume, nor enforce, any special alignment. ReturnsEOF if end-of-file is encountered.

52

5.1 File and stream I/O

char *gets s Function

Reads a line fromstdin into the character arrays. Does not include the trailing newline. Returns
NULL if end-of-file was encountered at the beginning of the line.

char *fgets s n stream Function

Reads a line fromstreaminto the character arrays. Reads at mostn - 1 characters before re-
turning. The line includes the trailing newline, if one was read. ReturnsNULL if end-of-file was
encountered at the beginning of the line.

putc ch stream Function

Writes the characterch to stream.

putchar ch Function

Equivalent toputc(ch,stdout).

fputc ch stream Function

A synonym ofputc (see above).

putw w stream Function

Writes the 16-bit ”word”w to streamas a pair of bytes, in such a way thatgetw will read the
same word back.

puts s Function

Writes theNUL-terminated strings to stdout, appending a newline character.

fputs s stream Function

Writes theNUL-terminated strings to stream. (Does not append a newline.)

int fread buffer itemsize itemcount stream Function

Readsitemcountitems, eachitemsizebytes long, fromstreaminto buffer. Returns the number of
items actually read; this will be smaller thanitemcountif end-of-file was encountered.

fwrite buffer itemsize itemcount stream Function

Writes itemcountitems, eachitemsizebytes long, tostreamfrom buffer.

53

5 Library routines

int fseek stream offset whence Function

Sets the read/write pointer ofstreamto offset, if whenceis 0; or to the current location plusoffset,
if whenceis 1; or to the end of the file plusoffset, if whenceis 2. If the resulting position is before
the beginning of the file, does nothing and returns -1; else returns the new value of the pointer.

int ftell stream Function

Returns the current value of the read/write pointer forstream. Note that on some file systems,
this value is a ”magic cookie” which is only meaningful tofseek.

frewind stream Function

Sets the read-write pointer forstreamto the beginning of the file.

5.1.3 Miscellaneous file operations

unlink name Function

Deletes the file namedname. Does not expunge it, so if the file system supports undeletion, it
can be undeleted.

chdir newdir Function

Changes the current directory (and, optionally, host and device) to that specified bynewdir. Note
thatnewdirmust be recognizable byfs:parse-pathname as containing a directory.

5.1.4 Formatted output

These functions all interpret theirfmt argument as described below.

printf fmt &rest args Function

Prints each of theargsonstdout according tofmt (see below).

fprintf stream fmt&restargs Function

Prints each of theargsonstreamaccording tofmt (see below.)

sprintf string fmt&rest args Function

”Prints” each of theargsaccording tofmt (see below), placing the output in the character array
string; appends aNUL at the end.

54

5.2 Formatted input

Characters in the format stringfmt are just copied to the output, except for%, which introduces a
formatting directive. A directive has the following syntax:

%[-][0][width][.precision][l]conv

width andprecisionare both decimal integers. If a minus sign appears beforewidth, the converted
value is left justified in the field; if a zero appears beforewidth, padding will be done with zeros
instead of blanks.convmay be one of the following:

d o x The integerarg is printed in decimal, octal, or hex respectively.

f g The floatarg is printed in the style ‘[-]ddd.ddd’ where the number of d’s
is precision(default 6); exponential notation is used in case of underflow or
overflow.

e The floatarg is printed in the style ‘[-]d.ddddde[-]dd’ where the number of
d’s isprecision(default 6).

s The NUL-terminated stringarg is printed; if precisionis specified, it is the
maximum number of characters to print.

c The characterarg is printed.NUL is ignored.

convmay be in either case. An ’l’ beforeconvis ignored.

Note that the floating-point conversions do not behave identically to those of UNIXprintf: there is
no distinction between thef andg conversions, and theprecisionis thetotal number of digits rather
than the number of digits after the decimal point.

5.2 Formatted input

These functions all interpret theirfmt argument as described below.

int scanf fmt &rest pointers Function

Reads input fromstdin, interprets it according tofmt, and stores the resulting values through
the correspondingpointers.

int fscanf stream fmt&rest pointers Function

Reads input fromstream, interprets it according tofmt, and stores the resulting values through
the correspondingpointers.

int sscanf string fmt&rest pointers Function

Reads input from theNUL-terminated character arraystring, interprets it according tofmt, and
stores the resulting values through the correspondingpointers.

[Documentation describing the interpretation of thefmt argument has not yet been written. However,
the full scanf functionality, as described in Harbison & Steele, is supported.]

55

5 Library routines

5.3 String manipulation

These functions work withNUL-terminated strings. Note that they will get array-bounds errors if the
NUL is missing, or if there is not enough room to copy into.

char *strcpy dest source Function

Copies the string atsourceto dest. (Note the order of the arguments; think of the function as
being like assignment.) Returnsdest.

char *strcat dest source Function

Concatenates the string atsourceonto the end of that atdest. (Note the order of the arguments;
seestrcpy above.) Returnsdest.

int strlen s Function

Finds the length of the string ats.

int strcmp s1 s2 Function

Compares strings in ASCII order, returning -1 ifs1< s2, 0 if s1== s2, or 1 if s1> s2.

5.4 Arithmetic and Transcendental Functions

To use any of these functions, add the line

#include <math.h>

at the beginning of the relevant files.

int abs val Function

Returns the absolute value ofval.

double acos x Function

Returns the trigonometric inverse cosine, in radians, of its argument.

double asin x Function

Returns the trigonometric inverse sine, in radians, of its argument.

double atan x Function

56

5.4 Arithmetic and Transcendental Functions

Returns the trigonometric inverse tangent, in radians, of its argument. The result is between -π/2
andπ/2.

double atan2 y x Function

Returns the angle part of the polar-coordinate representation of the point (x, y); that is, the angle
between the positive x-axis and a ray drawn from the origin through the point (x, y). The result
is in radians and is between -π andπ.

double atof str Function

Converts a string of numeric characters to a floating-point number. Recognizes an optional string
of tabs and spaces, then an optional sign, then a string of digits optionally containing a decimal
point, then an optional ’e’ or ’E’ followed by an optionally signed integer. The first unrecognized
character ends the string.

int atoi str Function

Converts a string of numeric characters to anint. Recognizes an optional string of tabs and
spaces, then an optional sign, then a string of digits. The first unrecognized character ends the
string.

long atol str Function

Since there’s no distinction in ZETA-C between anint and along, this is effectively a synonym
for atoi.

double ceil x Function

Returns the smallest integral value not less thanx.

double cos x Function

Returns the trigonometric cosine of its argument, which is assumed to be in radians.

double cosh x Function

Returns the hyperbolic cosine of its argument.

double exp x Function

Returns the exponentialex.

double fabs x Function

Returns the absolute value ofx.

57

5 Library routines

double floor x Function

Returns the largest integral value not greater thanx.

double hypot x y Function

Returns the square root of the sum of the squares ofx andy.

double log x Function

Returns the natural logarithm ofx.

double log10 x Function

Returns the base-10 logarithm ofx.

double pow x y Function

Returnsxy.

double sin x Function

Returns the trigonometric sine of its argument, which is assumed to be in radians.

double sinh x Function

Returns the hyperbolic sine of its argument.

double sqrt x Function

Returns the square root ofx.

double tan x Function

Returns the trigonometric tangent of its argument, which is assumed to be in radians.

double tanh x Function

Returns the hyperbolic tangent of its argument.

58

5.5 Memory allocation

5.5 Memory allocation

char *malloc size Function

Allocates a block of memorysizebytes long, and returns a pointer to the beginning of it. This
pointer can, of course, be cast to some other type. This works by calling the Lispmake-array,
and thus can only fail if you run entirely out of virtual memory – but since all processes allocate
from the same pool, this may well not be the fault of your C program. The allocated memory will
contain zeros, but since other implementations’malloc doesn’t guarantee this, you shouldn’t
count on it.

char *calloc nelem elsize Function

Allocates a block ofmemoryto hold nelemobjects eachelsizebytes long, and returns a pointer
to the beginning of it. Thefirst thing you should do with this pointer is to cast it to the correct
type; in fact, we recommend that you callcalloc only by way of a macro like the following:

#define aalloc(nelem, type) ((type *)calloc(nelem, sizeof(type)))1

ZETA-C explicitly recognizes such a construct, and when it allocates the block of memory, ini-
tializes it correctly for the type that it is cast to (which isnot the same as filling it with zeros,
since the null pointer is stored as aNIL followed by a zero). This works by calling the Lisp
make-array, and thus can only fail if you run entirely out of virtual memory – but since all
processes allocate from the same pool, this may well not be the fault of your C program.

char *realloc object newsize Function

Allocates a block of memorynewsizebytes long, and copies the contents ofobjectinto it (or as
much thereof as will fit, if the new object is smaller). Returns a pointer to the beginning of the
new object.

free object Function

Currently, does nothing. (In the future, this will optionally mark the object so that subsequent
accesses to it will be trapped).

5.6 Non-local exits

The ”functions”setjmp andlongjmp are provided to allow a function to return control to an active
function invocation other than its caller’s. To use them, include the line

#include <setjmp.h>

1 Unfortunately, this only works for relatively simple types like ”char *” and ”struct foo”; it fails syntactically for more
complex types like ”int (*)()”, since the second asterisk should goinsidethe first pair of parentheses. So for such cases
you’ll have to write the calloc expression out in full.

59

5 Library routines

at the beginning of the relevant files.

int setjmp env Function

Sets up a return point, storing the information necessary to return to it inenv for later use by
longjmp. Returns 0.

void longjmp env val Function

Returns to the return point created by the last invocation ofsetjmp onenv. Execution continues
as if that call tosetjmp had returned again, returning the valueval. (If val is 0, or if the function
that calledsetjmp has already returned,longjmp signals an error.)

5.7 Program termination

exit status Function

Exits the program immediately, closing all files. Ifstatusis nonzero, first offers to enter the
debugger (a nonzero status is traditionally used to indicate that the program encountered a fatal
error). This works by signallingsys:abort.

abort Function

Enters the debugger. (On UNIX, this gives a core dump.)

60

Index

?: operator, 21
Beginning of C Function..., 29
Down Comment Line, 30
End Comment, 30
End of C Function..., 29
Indent Region for C, 30
Indent for C, 30
Indent for Comment, 30
Mark C Function..., 29
Reposition Window for C, 31
Up Comment Line, 30
assignment of struct, 19
comment, indentation, 30
converting strings between C and Lisp, 16
firstclass structures, 19, 21
function call, 19
initializer, 20
lvalue, 20
parameter list, 21
predicate, 19
storage class, 20
struct, assignment, 19
struct, returning, 21
C-block-indentation, 29
C-indent-}-as-outside, 30
firstclass-structures, 19, 21
abort, 60
abs, 56
acos, 56
asin, 56
atan2, 57
atan, 56
atof, 57
atoi, 57
atol, 57
break statement, 19
c-compile-file, 22
calloc, 59
case statement, 20

ceil, 57
chdir, 54
close, 49
continue statement, 20
cosh, 57
cos, 57
creat, 49
exit, 60
exp, 57
fabs, 57
fclose, 52
feof, 52
fflush, 52
fgetc, 52
fgets, 53
floor, 58
fopen, 52
fprintf, 54
fputc, 53
fputs, 53
fread, 53
free, 59
frewind, 54
fscanf, 55
fseek, 54
ftell, 54
fwrite, 53
getchar, 52
getc, 52
gets, 53
getw, 52
gtty, 50
hypot, 58
ioctl, 51
isatty, 50
log10, 58
log, 58
longjmp, 60
lseek, 50

61

Index

malloc, 59
open, 49
pow, 58
printf, 54
putchar, 53
putc, 53
puts, 53
putw, 53
read, 50
realloc, 59
scanf, 55
setjmp, 60
sinh, 58
sin, 58
sprintf, 54
sqrt, 58
sscanf, 55
stderr, 51
stdin, 51
stdout, 51
strcat, 56
strcmp, 56
strcpy, 56
string-to-C, 16
string-to-lisp, 16
strlen, 56
stty, 50
switch statement, 21
tanh, 58
tan, 58
tell, 50
ttytimeout, 51
ungetc, 52
unlink, 54
write, 50
zeta-c:*firstclass-structures*, 19, 21
zeta-c:c-compile-file, 22
zeta-c:string-to-C, 16
zeta-c:string-to-lisp, 16
zwei:*C-block-indentation*, 29
zwei:*C-indent-}-as-outside*, 30
-*- line, 22, 29
C data structures, 12
C listener, 23
Harbison, Samuel P., 33
Inclusion of Lisp code, 35
Integer types, 44

Lisp code in C function, 35
Lisp objects in C, 34
Steele, Guy L. Jr., 33
ZETA-C implementation, 11
#lisp directive, 35
address array, 13
aggregates, 14
arbitrary-precision integer, 12
argument type checking, 25
arguments, pointer, 13
array leader, 16
arrays, 14
assignment conversions, 45
assignment expressions, 47
assignment of struct, 43
attribute list, 22
attribute list, 29
bit fields, 43
case of identifiers, 10, 35
character, 12
character types, 12
character constants, 38
character set, 17, 37
character set, source, 37
character types, 42
comment, problems with sectionizer, 31
comments, 37
comparison, pointer, 47
compilation, in editor, 32
component namespaces, 41
compound assignment operators, 47
compound statement, 47
constants, floating-point, 38
constants, character, 38
constants, integer, 38
constants, string, 39
conversion, int to pointer, 45
conversion, float to int, 44
conversion, function argument, 45
conversion, implicit double to float, 45
conversion, pointer to pointer, 44
conversion, pointer to int, 45
cursor movement in Zmacs, 29
data structures, 12
debugging, 17, 21
declarations, in editor, 31
declarations, problems with sectionizer, 31

62

Index

enumeration semantics, 43
enumeration types, 43
error messages, 17
errors, compilation, 18, 19
errors, syntax, 17
evaluation, order of, 47
example of, struct implementation, 15
example of, C listener, 9, 10
example of, declaration representation, 19
example of, function representation, 18
example of, hello world, 9
example of, nested aggregates, 15
example of, package prefix, 11
example of, pointer implementation, 13
example of, union implementation, 15
examples of, ZETA-C use, 9
expressions, 18
external names, 42
firstclass structures, 43
float to int conversion, 44
floating-point precision, 12
floating-point constants, 38
function type checking, 25, 48
function, in editor, 31
goto statement, 47
identifiers, 10, 35, 38
implementation, 11
incompatibilities, 33
incremental compilation, 6, 32
indentation of C code, 29
inequality operators, 47
initializers, 41
int to pointer conversion, 45
integer constants, 38
integer division, truncation in, 46
integer types, 12, 42
integer, arbitrary-precision, 12
integer, short, 12
integer, unsigned, 12
labels, 41, 47
labels, problems with sectionizer, 31
leader slots, reserved, 16
line length, 37
lispval (type), 34
named structure symbol, 16
numbers, 12
optarg, 41

optarg (parameter declaration), 33
order of evaluation, 47
overview of ZETA-C, 9
package, prefix, 11
package, C program, 11, 22
package, C:, 11
packedstruct, 14
parameter declarations, problems with section-

izer, 31
performance issues, 12
pointer comparison, 47
pointer representation, 13
pointer subtraction, 46
pointer to int conversion, 45
pointer to variable, 13
pointer type conversion, 44
precision, integer, 12
precision, floating-point, 12
preprocessor, 39
preprocessor directives, problems with section-

izer, 32
program construction, 22
representation, structure, 15
representation, array, 14
representation, expression, 18
representation, floating-point, 12
representation, function pointer, 14
representation, integer, 12
representation, packed structure, 15
representation, pointer, 13
representation, string, 16
representation, type, 19
representation, union, 15
reserved words, 38
restarg, 41
restarg (parameter declaration), 33
return value, function, 25
return value, pointer, 13
returning no value, 48
safety of a C implementation, 6
scope of declarations, 41
sectionization, 31
shadowing C library functions, 22
shift operators, 47
standard value, 11
statement labels, 41
static alternate names, 36

63

Index

static variables and functions, 36
string constants, 39
strings, 16
struct and union components, 41, 43
struct, returning, 43
struct, assignment, 43
structures, 14, 43
subtraction, pointer, 46
switch statement, 48
truncation in integer division, 46
turtle graphics, 10
type checking of functions, 25
type checking, function, 48
typedef names, 44
unions, 14
validation function, 11
variable numbers of arguments, 33
word length, 12
.array and.index variables, 13
defsystem, 22
null-function-pointer, 14
zeta-c:null-function-pointer, 14
\ escape sequences, 37, 39

64

	Overview and examples
	The ZETA-C Implementation
	Packages
	Data structures
	Numbers
	Pointers
	Arrays, structures, and unions
	Strings

	Debugging hints
	Syntax errors
	Compilation errors
	Runtime debugging

	Program construction
	C Listener
	Function Type Checking

	Editing C with Zmacs
	Cursor movement
	Indentation and misc.
	Sectionization
	Compilation

	The ZETA-C Dialect
	Variable numbers of arguments
	Lisp objects in C programs
	Inclusion of Lisp code
	ZETA-C Identifiers
	Static variables and functions
	Dialect reference
	1 Introduction to C
	1.2 AN OVERVIEW OF C PROGRAMMING
	2 Lexical Elements
	2.1 THE SOURCE CHARACTER SET
	2.1.1 Whitespace and Line Termination
	2.1.2 Character Encodings
	2.2 COMMENTS
	2.4 OPERATORS AND SEPARATORS
	2.5 IDENTIFIERS
	2.6 RESERVED WORDS
	2.7 CONSTANTS
	2.7.1 Integer Constants
	2.7.2 Floating-point Constants
	2.7.3 Character Constants
	2.7.4 String Constants
	2.7.5 Escape Characters
	3 The C Preprocessor
	3.2 PREPROCESSOR LEXICAL CONVENTIONS
	3.3.2 Defining Macros with Parameters
	3.3.3 Rescanning of Macro Expressions
	3.3.4 Predefined Macros
	3.3.5 Undefining and Redefining Macros
	3.3.6 Some Pitfalls to Avoid
	3.5 CONDITIONAL COMPILATION
	3.5.5 The defined Operator
	3.6 EXPLICIT LINE NUMBERING
	4 Declarations
	4.2 TERMINOLOGY
	4.2.1 Scope
	4.2.4 Overloading of Names
	4.2.8 Initial Values
	4.2.9 External Names
	4.3 STORAGE CLASS SPECIFIERS
	4.6 INITIALIZERS
	4.6.8 Other Types
	4.8 EXTERNAL NAMES
	5 Types
	5.1 STORAGE UNITS
	5.2 INTEGER TYPES
	5.2.3 CHARACTER TYPE
	5.4 POINTER TYPES
	5.4.2 Some problems with pointers
	5.6 ENUMERATION TYPES
	5.6.1 Detailed Semantics
	5.7 STRUCTURE TYPES
	5.7.1 Operations on Structures
	5.7.2 Components
	5.7.4 Bit Fields
	5.11 TYPEDEF NAMES
	5.11.1 Redefining Typedef Names
	6 Type Conversions
	6.3 CONVERSIONS TO INTEGER TYPES
	6.3.2 From Floating-point Types
	6.3.4 From Pointer Types
	6.7 CONVERSIONS TO POINTER TYPES
	6.7.1 From Pointer Types
	6.7.2 From Integer Types
	6.11 THE ASSIGNMENT CONVERSIONS
	6.12 THE USUAL UNARY CONVERSIONS
	6.14 THE FUNCTION ARGUMENT CONVERSIONS
	7 Expressions
	7.2 EXPRESSIONS AND PRECEDENCE
	7.2.3 Overflow and Other Arithmetic Exceptions
	7.5 BINARY OPERATOR EXPRESSIONS
	7.5.1 Multiplicative Operators
	7.5.2 Additive Operators
	7.5.3 Shift Operators
	7.5.4 Inequality Operators
	7.8 ASSIGNMENT EXPRESSIONS
	7.8.2 Compound Assignment
	7.11 ORDER OF EVALUATION
	8 Statements
	8.4 COMPOUND STATEMENT
	8.7 SWITCH STATEMENT; CASE AND DEFAULT LABELS
	9 Functions
	9.5 AGREEMENT OF FORMAL AND ACTUAL PARAMETERS
	9.8 AGREEMENT OF ACTUAL AND DECLARED RETURN TYPE

	Library routines
	File and stream I/O
	Kernel level I/O
	Stdio level I/O
	Miscellaneous file operations
	Formatted output

	Formatted input
	String manipulation
	Arithmetic and Transcendental Functions
	Memory allocation
	Non-local exits
	Program termination

